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5

Word-Vectors and Search Engines

So far in this book we have discussed symmetric and antisymmetric

relationships between particular words in a graph or a hierarchy,

described one way to learn symmetric relationships from text, and

shown how to use ideas such as similarity measures and transitivity to

find ‘nearest neighbours’ of a particular word. But ideally we should

be able to measure the similarity or distance between any pair of

words or concepts. To some extent, this is possible in graphs and

taxonomies by finding the lengths of paths between concepts, but

there are problems with this. First of all, finding shortest paths is often

computationally expensive and may take a long time. Secondly, we

might not have a reliable taxonomy, and as we’ve seen already, that

there is a short path between two words in a graph doesn’t necessarily

mean that they’re very similar, because the links in this short path

may have arisen from very different contexts. Thirdly, the meanings of

words we encounter in documents and corpora may be very different

from those given by a general taxonomy such as WordNet — for

example, WordNet 2.0 only gives the fruit and tree meanings for the

word apple, which is a stark contrast with the top 10 pages returned

by Google when doing an internet search with the query apple, which

are all about Apple Computers.

Another limitation of our methods so far is that we have focussed

our attention purely on individual concepts, mainly single words.

Ideally, we should be able to find the similarity between two arbitrary

collections of words, and quickly. For this, we need some process for

semantic composition — working out how to represent the meaning of a

sentence or document based on the meaning of the words it contains.
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This all sounds like a pretty tall order, but (to some extent) it’s actually

been possible for years and you will probably have encountered such

a system many times — it’s precisely what a search engine does.

The traditional ways in which a search engine accomplishes

these tasks are almost entirely mathematical rather than linguistic,

and are based upon numbers rather than meanings. Based on its

distribution in a corpus, the meaning of each word is represented by a

characteristic list of numbers, and the numbers representing a whole

document are then given simply by averaging the numbers for the

words in the document! Bizarre but effective.

This chapter is all about the ‘lists of numbers’ used to represent

words and documents, and these lists are called vectors. The discussion

of vectors will finally bring us to talk in detail about different

dimensions and what they mean to a mathematician. This in itself

might be of interest to many readers, and quite different from what

you supposed.

5.1 What are Vectors

A vector is a very useful way of keeping track of several different pieces

of information, all of which relate to the same concept or object. For

example, suppose I have a drawer at home where I keep my leftover

currency from travelling to different countries, and have a small pile

of 6 US dollars ($6), 20 UK pounds (£20), 15 Euros from Germany (€15)

and 100 Japanese yen (¥100). We could write this information down in

a table

$ £ € ¥
6 20 15 100

or if we keep careful track of the ‘convention’ ($, £, €, ¥) we could write

this as the row vector

Dm = (6, 20, 15, 100),

where Dm stands for “Dominic’s money”. Now, suppose that Maryl

has a similar drawer, which contains

$ £ € ¥
50 16 20 0

This information can be encoded in the row vector

Mm = (50, 16, 20, 0).
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If we marry our fortunes together, what will our combined currency

drawer contain? The answer is simple — just add together the

numbers in the matching positions and you get the combined vector

Dm + Mm = (56, 36, 35, 100).

Suppose that we decided to put this money into savings and it grew

by 20% (which corresponds to multiplying by the number 1.2). Then

we’d have

1.2(Dm + Mm) = (67.2, 43.2, 42, 120).

Not impressed? Maybe it doesn’t seem like rocket science to write

down two lists of numbers, keep track of which numbers refer

to which currencies, and then add and multiply these numbers.

But it turns out that the ability to break a situation down into

individual numbers, to do separate calculations with those numbers,

and then to combine the answers to represent a new situation, can be

extremely powerful, because it allows us to break down a potentially

complicated process into a number of extremely simple ones. And by

the way, you just dealt with points in a four-dimensional space without

even blinking.

5.2 Journeys in the plane

a

 b
a+b

FIGURE 29 The journey
a + b

Another situation that can be described

using vectors is one we’ve already

encountered — namely, the 2-dimensional

plane can be thought of as a vector space.

In Figure 29, the arrows a and b represent

two ‘journeys’ in a plane. The combined

journey from going along the a arrow

and then the b arrow is called the sum of

the journeys a and b, and so is (naturally

enough) written as a + b.

 b

a

b+a

FIGURE 30 The journey
b + a

On the other hand, we could have

gone along the journey b first, followed by

the journey a, and this combined journey

would be called b + a. One fundamental

property of the flat plane is that these two

journeys have the same destination: a + b
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a.

b.

b
a

If you travel north, then east

you’ll reach point 

If you travel the same

distances east, then north

you’ll reach point 

FIGURE 31 When combining two journeys on a sphere, you can end up at
different places depending on which journey you make first.

and b + a are two ways of writing the same journey. This isn’t always

true — it depends on the space in which a and b are journeys. For

example, imagine your space is a sphere like the earth and you start

on the equator. If you go 1000 miles north and then 1000 miles east,

you will end up further east that if you go 1000 miles east, then 1000

miles north, because the parallel (line of latitiude) 1000 miles north is a

smaller circle than the parallel of the equator, as shown in Figure 31.49

Because a sphere is curved, it turns out that the order in which you

make different journeys matter — the convenient identity a+b = b+a

ceases to be true.

In fact, the amount to which different journeys can land you in

different destinations can be used to define and measure the very

concept of the curvature of a mathematical space. Vector spaces are

special precisely because they aren’t curved — they are ‘flat’ or ‘linear’,

49At the extreme, if you go as far as the north pole, the ‘line of latitude’ collapses
from a circle to a single point — the north and south poles do not have a well
defined longitude, since all lines of longitude intersect at the poles. This ‘singularity’
is responsible for the old brainteaser

Suppose you walk ten miles south, ten miles east, ten miles north and find yourself at the point
you started from. Where are you?

the answer being that you must be at the north pole.
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and because of this the study of vectors is called linear algebra. As

a result of this linearity, vector spaces obey Euclid’s fifth axiom of

geometry, which states that parallel lines never meet.

θ  i e θ

The Parallel Axiom

Euclid’s fifth Axiom of Geometry
states

5. That, if a straight line falling on two
straight lines makes the interior angles
on the same side less than two right
angles, the two straight lines, if produced
indefinitely, meet on that side on which
are the angles less than the two right
angles.

This is equivalent to saying that
parallel lines never meet. Because it
is so much more cumbersome
than the first four axioms,
mathematicians tried to prove
it as a consequence of these, rather
than assuming it as an axiom in its
own right, for over two thousand
years.
In the 19th century, mathematicians
such as Gauss, Bolyai, Labachevsky
and Riemann finally realised that
the behaviour of parallel lines
depended on the nature of the space
you were working in: for example,
all the lines of longitude on a globe
are parallel at the equator and meet
at the poles. As often happens when
we let go of rules that didn’t need
to be there, letting go of the parallel
axiom led to a whole new field of
non-Euclidean geometry, which paved
the way for the Theory of Relativity.

The process of putting two

journeys, or vectors, together

into a single journey is called

vector addition. You should

convince yourself that this is

a wise generalisation of the

real number addition operation

you learnt as a child. In this

context, real numbers behave as

‘1-dimensional vectors’. Draw

yourself a mental picture of how

our a + b and b + a journeys

appear along a single line, and

I hope you’ll see what I mean.

Another way of describing

vector addition is called the

‘parallelogram rule’. If you can

see why by mentally combining

Figures 29 and 30, you’re well on

the way to understanding what’s

going on.

The symbol ‘+’ which means

“add together these two vectors

(or numbers)” is called an

operator. An operator is different

from a relationship such as

similarity ‘∼’ or hyponymy ‘ v ’,

because whereas a ∼ b is just an

assertion that the relationship

holds, the operation a + b has

a result or outcome. Familiar examples of relationships between

numbers are “equals ( = )” and “less than ( < )”: familiar examples of

operators are multiplication, addition and subtraction. The similarity
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and distance measures of Chapter 4 are all operators because they

produce a number.

Just as a relationship a � b where the order of a and b is irrelevant

is called symmetric (Definition 2), an operator where the order of the

inputs doesn’t matter also has a special name.

Definition 11 A mathematical operator ‘?’ is said to be commutative50

if a ? b = b ? a for all possible a and b.

Simple examples of commututive operations are addition and

multiplication of real numbers: we know that a+b = b+a and ab = ba.

Subtraction, on the other hand, is certainly not commutative, because

a − b 6= b − a. In fact, since in general

b − a = −(a − b),

the result of swapping a and b round is to give us the opposite answer,

and the for this reason the subtraction operator is anticommutative.

The operation of adding the ‘currency vectors’ in section 5.1 is

also commutative — it doesn’t matter whether you add my fortune

to Maryl’s, or the other way round, you get the same answer.

Vector addition must always be commutative, and this is one of

the reasons why vector addition is a good generalisation of real

number addition. In fact, the amalgamation of our ‘currency vectors’

is commutative precisely because it is a combination of four separate

addition operations with numbers, and each of these separate sums is

commutative.

So much for adding vectors. The other operation we must be able

to perform is scalar multiplication — stretching or shrinking of vectors.

Any of our ‘journey vectors’ can be scaled up or down to give you

a journey in the same direction but of different length. Similarly, we

could scale our currency vector by a factor of 20% (multiplying by

1.2), or any other factor (though in this case we might find ourselves

rounding the result to two decimal places or the nearest ‘cent’, which

50The word commutative has nothing to do with travelling to work or having a prison
sentence reduced: nor is there really any good reason why we couldn’t call an operator
symmetric instead of coining this new technical term. There is no particularly good
reason why you have to learn a new four syllable word at this point, except that for
those readers who are already familiar with it, it would be too confusing to change
things now — because of this, the excessive jargonisation of all contemporary fields is
getting out of hand and is apparently impossible to resist.
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the bank normally does on our behalf when calculating interest). Just

as addition must satisfy a few properties such as being commutative,

scalar multiplication must also be well-behaved in certain ways. For

example, if Maryl and I invested our money separately, each got a

return of 20%, and then married our new fortunes together, we should

get exactly the same amount as if we married them together first and

then increased the total by 20%. In equations, this would be

1.2Dm + 1.2Mm = 1.2(Dm + Mm),

which you can easily check is true in this case. This ‘scaling operation’

can be traced back to Euclid’s second Axiom of Geometry, which states

that it is always possible

2. To extend a finite straight line continuously in a straight line.

A set of points equipped with addition and scalar multiplication

operations must satisfy the eight axioms of Figure 32 to be a vector

space. These axioms were given by Peano in 1888, though this was

really a culmination of different strands of mathematical progress

throughout the 19th century and before. In the next section we

will explain how this culmination came to be, and this process will

hopefully make some difficult ideas very clear. This will leave us in

a sound position to use the techniques of vector spaces to describe

words and their meanings.

5.3 Coordinates, bases and dimensions

What do the currency vectors of Section 5.1 and the journey vectors of

Section 5.2 have in common? We could try to go through and check

that the eight axioms of Figure 32 hold for both systems and say that

this is what they have in common, but this is really a topic for a linear

algebra homework assignment, not a book on meaning. What we want

to know is how they came to be regarded as similar systems — after

all, this similarity was recognised long before the axioms were written

down.

The main breakthrough in thinking of journeys in the plane as

lists of numbers is made by giving each journey a set of coordinates,

which break the journey down into different components in different

directions. You will almost certainly have come across these in high

school, and we have used them already in this book.
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Formal Definition of a Vector Space

A (real) Vector Space is a set V equipped with two mappings, called addition (which
maps V × V to V ) and scalar multiplication (which maps R × V to V ).

Addition must obey the following axioms:
.A1. Addition is associative, so that for all a, b, c ∈ V , (a + b) + c = a + (b + c)..A2. Addition is commutative, so that for all a, b ∈ V , a + b = b + a..A3. There is an additive identity element 0 ∈ V (called the “zero vector”) such that for
all a ∈ V , a + 0 = 0 + a..A4. For each element a ∈ V , there exists an element −a ∈ V with a + (−a) = 0.

Scalar Multiplication must obey the following axioms:
.M1. Scalar multiplication is associative, so that for all λ, µ ∈ R and for all a ∈ V ,
(λµ)a = λ(µa)..M2. 1a = a for all a ∈ V ..M3. Scalar multiplication is distributive over addition in V , so that for all λ ∈ R and
for all a, b ∈ V , λ(a + b) = λa + λb..M4. Scalar multiplication is commutative over addition in R, so that for all λ, µ ∈ R

and for all a ∈ V , (λ + µ)a = λa + µa.

FIGURE 32 A vector space must satisfy these eight axioms (Jänich, 1994, p 17)
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FIGURE 33 The coordinates or
components of a vector

The basic picture is in Figure 33,

where the vector a is decomposed

into 2 parts by projecting it onto

two fixed vectors or axes. If

the projection hits the x-axis at

distance of a1 units from the

origin, this number is said to be

the x-coordinate of the point a,

and similarly, if the projection

intersects the y-axis at a2, then

this is said to be the y-coordinate

of a. The point a is then said to have coordinates (a1, a2), though it

is only by convention that first coordinate refers to the horizontal

component and the second to the vertical component, the ‘right’ and

‘up’ directions regarded as being ‘positive’.51

One thing that may cause confusion: we’ve talked about giving

coordinates to ‘points’ in the plane and ‘journeys’ in the plane — but

a journey requires a pair of points (a beginning and an end), not a

51That this is only conventional is apparent in computer graphics, where the ‘down’
direction is normally regarded as positive and the position of a point is determined by
its coordinates measured from the top left hand corner of the screen.
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single point, so how can they both be represented by the same sorts

of coordinates? The answer is that the point a is identified with the

journey from the origin or ‘zero point’ to the point a, so we can think

of both “the point a” and “the journey from 0 to a” as vectors in the

plane.

θ  i e θ

Cartesian coordinates

The use of a pair of numbers such
as (x, y) to represent points in
the plane is justly associated with
Rene Descartes (1596-1650), though
he was not the first to invent it.
Descartes realised that many of the
relationships between geometric
figures such as lines and curves
could be represented by numbers in
this way — for example, the cosine
wave on page 107 is the locus of all
points whose Cartesian coordinates
(x, y) are related by the equation
y = cos(x).
In this way, many old geometric
problems, such as finding the point
where two curves intersected, could
be solved using the techniques
of algebra which, thanks mainly
to Islamic mathematicians, had
made enormous progress since the
Greeks. In algebraic terms, the use
of Cartesian coordinates amounts
to representing the plane as a set of
pairs of real numbers in the product
set R × R, which is why the plane
is often referred to by the symbol
R

2 (normally pronounced “R2”,
like the cute droid from Star Wars).
To this day, product sets of this
sort are called ‘Cartesian’, though
ascribing such a general algebraic
notion to the works of Descartes is
an anachronism.

Giving these numbers or

coordinates to a journey vector

enables us to carry out the

processes of vector addition and

scalar multiplication without

having to draw the pictures.

For example, we can work out

the additions in Figures 29 and

30 very easily: if the vector a

has coordinates (a1, a2) and

the vector b has coordinates

(b1, b2) then their sum a + b

will have the coordinates

(a1 + b1, a2 + b2). The method of

using coordinates in this fashion

was a gradual mathematical

development: Appolonius of

Perga (ca. 260-190BC) and the

French bishop Nicole Oresme

(ca. 1320-1382) both described

points in figures using distances

from a pair of fixed locations,

ideas which contributed to the

Analytic Geometry of Descartes

(1637). The description given

by Descartes’ of choosing a

particular line as a ‘unit’, and

ascribing numerical lengths to

other lines according to their

ratio with this unit, is one of

the first clear-cut definitions of

‘measurement’ in the sense of Section 1.3.
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This explains how we can use numbers to represent the pictures

of Figures 29 and 30. We can also go the other way — suppose we

wanted to represent the first two coordinates of the currency vectors in

Section 5.1 pictorially. (These are the amounts of dollars and pounds,

Dm = (6, 20) and Mm = (50, 16).) We could plot these on a grid

and add them together using the parallelogram rule, and finally read

off the coordinates of the resulting sum, Dm + Mm = (56, 36), as

in Figure 34. This may seem like a long way round, though as we’ll

see in Chapter 6, representing vectors as points on a plane like this,

rather than as a pair of numbers, can give a much more intuitive

representation of which groups of vectors are close to one another.

Just as points in the plane are often given x and y coordianates, Figure

34 shows that we can just as well talk about “$ and £ coordinates”.

Ideally, we would have represented the “€ and ¥ coordinates” as well,

though it would be difficult to represent three of these coordinates at

once on a flat page, and pretty much impossible to represent all four

of them in a way that made any sense.

(50, 16)

Dm = (6, 20)

Mm = 

20 40

20

$

(56, 36)Dm + Mm = 

0

FIGURE 34 Adding together currency vectors

In order to represent a

vector as a list of numbers,

it is clearly necessary to

keep a ‘key’ telling us

which quantity each

number refers to. For

the currency vectors, we

needed to remember that

the code (a1, a2, a3, a4)

was shorthand for “$a1,

£a2, €a3 and ¥a4”. When

working in the plane we need to choose coordinate axes, and while

the convention is to use ‘eastward’ and ‘northward’ pointing axes,

there is no a priori reason for making this particular choice.52 This

52We could use ‘south’ and ‘north-northwest’ as our coordinate axes, since you can
still specify any journey by saying how far south you have to go, followed by how far
north-northwest you have to go — and this representation would be just as unique and
unambiguous as the more familiar x and y coordinates. When developing the technique
of using coordinates, Descartes in fact used many different pairs of axes, not necessarily
at right angles to one another — the convention of using the same pair of perpendicular
axes for most problems came later.
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key telling us which coordinate is which is called a basis for the

vector space. For example, the basis for our currency vectors is the set

{$1,£1, €1, ¥1}.

Time: absolute
or relative?

The difference between a vector
itself and the coordinates used
to write the vector down may be
subtle, but it is a vital conceptual
difference. For example, (according
the the Special Theory of Relativity)
the time measured between different
events is not a property of the events
themselves, but depends on how
you choose your coordinates.
Because the speed of light c is
constant, and speed is a relationship
between position and time, if
you change the way you measure
position you must also change
the way you measure time.
The relationships between the
‘time-coordinates’ of different
events is therefore different for
different observers. This interplay
between space and time has strange
consequences — for example, two
events which are similtaneous for
one observer may happen at different
times for another. If this sounds
confusing but you really want to
‘get it’, see www-csli.stanford.
edu/˜dwiddows/train.html .

Now, each coordinate refers

back to one of these ‘basis

elements’, so the number of

coordinates needed to represent

any point is always the same as

the number of items in the basis.

For example, the vector Dm =

(6, 20, 15, 100)) has 4 coordinates,

one to refer to each of the 4

currencies listed in the basis.

This number is an important

characteristic property of any

vector space, and it’s a word

you will have come across many

times.

Definition 12 The dimension of a

vector space is the number of

coordinates needed to uniquely

specify a given point.

The flat plane has two

dimensions, since each point

needs 2 coordinates to represent

it: normally these are the x and

y coordinates. The currency

vectors of Section 5.1 have four

dimensions, because each vector

is made up of 4 coordinates (or numbers) of Dollars, Pounds, Euros

and Yen.

Hopefully this will break a few misunderstandings, if they haven’t

been broken already. We’ve probably all heard and wondered about

the question

Is time the fourth dimension?
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Well, clearly the answer for our currency vectors is “no” because

in this space, “Japanese Yen” is the fourth dimension! This goes

back to the difference between studying physical space as opposed to

studying mathematical spaces. In mathematics, we use however many

dimensions we need to represent the information we’re working with

— if a sitation is complicated enough to require more than than 2, or 3,

or 4 coordinates to properly represent it, then we’ll use a ‘space’ with

as many coordinates as are necessary. However, if you are seeking to

model the physical universe, then four coordinates can be a very good

choice — three to measure different directions in space, and one to

measure the time that elapses between two events (this is exactly what

we did when defining the Minkowski distance on page 110). So in this

sense, the answer is “yes”, insofar as there are some very good models

of the physical universe where time is a ‘fourth dimension’.

θ  i e θ Coordinates and
vectors

Since there are many different ways
to choose a basis, and thus to assign
coordinates to each point in a vector
space, we must check that the
mathematics is the same whatever
choice we make. For example, if
the dimension of a vector space
is the number of elements in any
basis, we had better make sure
that this number is the same for
every possible basis of a given
vector space (Jänich, 1994, p. 46) —
otherwise ‘dimension’ would not be
a property of the space itself, but
only of one particular coordinate
system.
Also, the sum of two vectors a + b

can be calculated by adding their
respective coordinates, but must be
the same vector for every possible
coordinate system. These important
properties can all be proved from
the axioms in Figure 32.

The main trouble that most

people have when trying to

‘think’ in more than three

dimensions is that they try to

visualise all these dimensions

at once. We already accepted

this limitation in Figure 34:

when I was explaining what

currency vectors and journey

vectors have in common, I

only drew a picture of two

of the ‘currency coordinates’

(dollars and pounds) since we

could easily represent these

on a flat piece of paper. Do

not hold yourself back from

understanding what dimensions

are by trying to visualise more

than three dimensions at once:

it’s a good way of gettting

frustrated because it’s just not

within our physical experience.

There are some rare people who
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say that they can ‘picture’ four or more dimensions. I can’t, I never

have been able to, and I found spaces of higher dimensions much

easier to live and work with once I accepted that several dimensions

could be perfectly valid and consistent, even if I couldn’t force them

to somehow fit into my physical, visual experience. There’s a cheesy

moral for life there somewhere, I’m sure, but maybe it’s high time we

got back to talking about language.

5.4 Search Engines and Vectors

Early search engines relied on simple ‘term matching’. If a document

contained the keywords in a user’s query, it was marked ‘relevant’

and returned to the user: if not, it was marked ‘irrelevant’ and left

behind. But by the 1970’s, as document collections grew bigger, the

flaws in such an approach became more and more damaging. One

main problem that people encountered is that with large document

collections (which would be considered small by today’s standards),

returning every document that matched the keywords would still leave

the user with a huge mass of documents to wade through to try

and work out if they were relevant. For example, suppose that you

wanted to find out about geometry. A search of the internet which

returned every matching document would end up directing you to

nearly every course list in every mathematics department in every

university, since nearly all of these course lists will probably contain

the word geometry somewhere. But these pages won’t actually be

about geometry, so they won’t really be relevant to the user’s query.

To take extreme examples, a dictionary will probably contain most

common words that aren’t proper names, but the dictionary isn’t

relevant to every query containing these words. A telephone directory

will contain a huge number of proper names, but it still won’t

be relevant to many queries containing one of these names. Long

documents containing huge numbers of words could be declared

relevant to almost any query — but these are often precisely the

documents whose information is most diluted. It became very clear

that a better measure of relevance was needed than could be achieved

by simply dividing the document collection into documents that did

and didn’t contain the keywords.

One way to do this (and I should stress that there are several)



13. Oktober 2003

144 / GEOMETRY AND MEANING

Document 1 (BNC)
The first Bass VI I remember seeing was being used on television by Jack Bruce, during a mimed
performance of Strange Brew by Cream. Recollections indeed: an extremely fashionable Cream,
with serious sideburns all round, grossly extended collars on satin shirts, Clapton’s Hendrix
perm, flared trousers and Les Paul. Being nobbut a sprog, I remember wondering why bassist
Bruce was playing a guitar. Only he wasn’t, of course; he was playing a Fender Bass VI. He also
became arguably the most famous exponent of the instrument, along with Eric Haydock of The
Hollies.

Document 2 (NYT, 1996)
ORLEANS, Mass. — When weekend fishermen looking to unwind come to Rock Harbor, they
take out their rods and reels and angle for striped bass one by one. When commercial fishermen
like Mike Abdow go out on their boats to earn a living, they catch bass the same way. By law,
they must reel them in one at time, without nets, traps or long-line gear. But right now, the waters
are rough between people who fish bass for a living and those who angle for pleasure. In a feud
that has divided people along the Massachusetts coast, big-money sporting interests are trying
to stop small-time commercial fishermen from pulling in any more striped bass.

Document 3 (NYT, 1995)
Kuala Lumpur, Oct. 26 (Bloomberg) – bank Negara will change the way it calculates the cost of
lending money to commercial banks and financial institutions, the central bank said in a release.
In a statement, the bank said that as of Nov. 1, the base lending rate, at which commercial banks
can borrow from the central bank, will become more responsive to movements in money-market
rates. Several weeks ago, the bank said it would change the way it calculates the base rate, said
Desmond Ch’ng, a banking analyst OCBC Securities (Malacca) Sdn. Bhd.

FIGURE 35 Three documents about different topics

is to represent words using vectors. The coordinates of these vectors

are numbers which measure the extent to which a particular word is

important to a particular document. To begin with, these coodinates

are obtained simply by counting the number of times each word is

used in each document.

As a small-scale example of this technique, consider the three

documents in Figure 35, in which a handful of different words have

been highlighted (bank, bass, commercial, cream, guitar, fishermen
and money). The number of instances (tokens) of each of these words

in each of the three documents is recorded in Table 4.

Such a table, which records the number of times each word occured

in each of a collection of documents, is called a term-document matrix.53

Obviously, the snapshot we’ve taken in Table 4 is a tiny fragment of

the term-document matrix used by any real search engine — we’ve

53A matrix (plural matrices) in this context is simply a table of numbers. There are
well-defined algebraic rules for how pairs of matrices can be added and multiplied
together, provided that the number of rows and columns in the two matrices is
compatible. Matrices grew out of an an 1858 memoir on transformations written by
the British mathematician Arthur Cayley (1821-1895), partly as a generalisation of
Hamilton’s quaternions (Boyer and Merzbach, 1991, Ch 26).
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Document 1 Document 2 Document 3
bank 0 0 4
bass 2 4 0
commercial 0 2 2
cream 2 0 0
guitar 1 0 0
fishermen 0 3 0
money 0 1 2

TABLE 4 We count the number of times each of these words is used in each of
our documents

only taken three documents and only considered a few of the words

they contain. However, it’s still possible to get some idea of how the

table works, and hopefully the reader will then be able to extrapolate

and imagine the huge table we’d produce from a document collection

of several million words (or nowadays, several billion webpages).

Table 4 can be used as a simple ‘inverted file index’, like a

traditional concordance.54 That is, if you’re interested in fishermen,

the table will tell you to look in Document 2, if you’re interested in a

bank, the table will tell you to look in Document 3, and so on. But the

real advantage of measuring the number of times each word occurs in a

document comes when you have words occuring in many documents,

and you want to know which document is the most relevant. For

example, if you want to find out about money, Table 4 will tell you

that it’s mentioned in both Document 2 and Document 3, but since

it’s mentioned twice as much in Document 3, you should start by

reading this document, because the term money is more concentrated

or ‘denser’ in this document. This would be good advice — while

Document 2 mentions tensions between two groups of people which

have monetary consequences, Document 3 is directly about finance.

There are many problems and issues with this idea that we haven’t

even begun to address, some of which are listed below:

. Many possible meanings of the different terms are absent from this

54The term ‘inverted file index’ or ‘inverted file format’ is used because words are
described by a list of documents, whereas it’s more usual to think of documents being
by a list of words (Salton and McGill, 1983, Ch 2). A concordance, often of the Bible,
is a big book where a Biblical scholar can look up a word such as light and find the
chapter and verse of every place where the word light appears, hoping to trace the way
a theological concept is used and developed through the centuries.
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fragment — bank can also refer to a river bank, and most of the

time cream is more likely to mean a dairy product than a 1960’s
rock band.

. The term bass does have more than one meaning in our 3

documents — it means a kind of musical instrument in Document

1 and a kind of fish in Document 2. If a user is only interested in

one of these meanings (and in this case, it’s unlikely that they’d be

interested in both at the same time), how are we to enable users to

search for only the documents containing this meaning of bass?

. The term guitar only appears once in Document 1 — but it’s very

possible that a user searching for the term guitar would also find

articles containing the term Les Paul relevant, since Les Paul is a

make of guitar.

Many of these questions will be addressed during the rest of this book

— though in truth, none of them can honestly be said to have been

completely solved.

Now, here’s the point. The rows of numbers in Table 4 can be

thought of as vectors, just like the lists of numbers in the ‘currency

vectors’ of Section 5.1. The different rows can be added together

component by component, or scaled by any other real number, and it

is a simple matter to check that these rows, and the operations of row

addition and scalar multiplication, satisfy the axioms of Definition 32.

Because of this, some of the theory and techniques of vectors, which

are very well developed and well understood parts of mathematics,

can be used to calculate and reason with words.

In fact, because they only have 3 coordinates each, it’s almost

possible to imagine these particular word vectors as points in a 3

dimensional space, as I’ve tried to depict in Figure 36. However, as

we go through this section you’ll realise that this diagram is only a

visual aid — all of the mathematics we use to work out which words

are similar to which other words can be done entirely by working with

the coordinates in Table 4.

5.5 Similarity and distance functions for vectors

In this section we describe the most prominent ways to measure

similarity and distances between vectors with any number of

dimensions, and show how they can be applied to our word vectors.
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FIGURE 36 Imagining the word vectors in Table 4 as points in the three
dimensional space R

3
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This should provide you with some robust mathematical tools and

terminology (which may seem challenging, but which are easy to use

in practice and very easy to program into a computer) and a taste of

the possible linguistic applications.

Lets start with a few examples from the term-document matrix in

Table 4, which gives us word vectors such as

bank = (0, 0, 4), bass = (2, 4, 0) and money = (0, 1, 2).

In order to measure a ‘similarity’ between these word vectors, we

could just multiply their first, second and third coordinates together

and add the results, exactly as we did when introducing the cosine

measure (Definition 8, page 107). For example, to obtain a score for

the similarity of bank and money, we calculate

sim(bank, money) = (0 × 0) + (0 × 1) + (4 × 2) = 8.

Using the same measure, the similarity between bass and money
would be

sim(bass, money) = (2 × 0) + (4 × 1) + (0 × 2) = 4,

and the similarity between bank and bass would be

sim(bank, bass) = (0 × 2) + (0 × 4) + (4 × 0) = 0.

If this doesn’t ‘click’ straight away, do pause to work out where these

numbers have come from and why they’ve been paired up in this

fashion. The resulting ‘similarity scores’ are not without merit — for

these three words, they show us that the two most similar words

are bank and money, that bass and money are less similar though

not unrelated (which in this context appears to make sense — the

similarity is drawn entirely from Document 2, which does discuss the

financial interests behind bass fishing), whereas bass and bank have

nothing in common at all.

However, there are drawbacks with this similarity score — in

particular, it gives higher similarities to more frequent words. For

example, for the vectors guitar = (1, 0, 0) and cream = (2, 0, 0), the

similarities for cream will always be exactly double those for guitar:
but just as when we compared composers such as mozart and wagner
with composers such as hottenterre and giamberti in Section 4.3, it

doesn’t seem right that cream should be twice as ‘similar’ as guitar
to every single word, just because it occurs twice as often. (Of course,
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the distribution in our ‘three document’ example is hardly realistic,

but it makes the general point that frequent words might get higher

‘similarity scores’ across the board, and this would not be such a good

thing.)

Just as in Section 4.3, we can get round this problem by normalising

or ‘dividing out’ our similarity scores. This will be easiest if we

introduce some notation and terminology for vectors in general,

which will also be frequently used in later chapters.

5.5.1 Introducing the vector space R
n

So far we’ve seen that a ‘journey vector’ a in the plane may be given

by two coordinates. Because each point is given by 2 real numbers,

the plane is given the name ‘R2’. Because our word vectors in Table

4 are collected from 3 different documents, each word vector in

this example has 3 coordinates. The space of all possible collections

of 3 real numbers is given the name ‘R3’. This idea can easily be

generalised — a vector with n real number coordinates is considered

to be a ‘point in R
n’.

Definition 13 The vector space R
n is made up of all lists of the form

(a1, a2, . . . , an) where each of these entries is a real number.

By definition, each point in R
n has n coordinates, so the dimension

of R
n is the number n.

Addition of vectors in R
n is defined just as you would expect — the

sum of two vectors (a1, a2, . . . , an) and (b1, b2, . . . , bn) is

(a1 + b1, a2 + b2, . . . , an + bn).

To multiply the vector (a1, a2, . . . , an) by a given number or ‘scale

factor’ λ, again multiply each of the coordinates in turn, giving

(λa1, λa2, . . . , λan).

This may look horrible. If you’re having difficulty, go back to the

calculations with currency vectors in Section 5.1, which are precisely

examples of the equations above. Because we’re so used to the idea of

currencies, it’s completely natural to think of adding two collections

together by adding the dollars to the dollars, then adding the pounds

to the pounds, etc. It also makes sense that to scale a whole currency

vector by a given scale factor, you have to scale each currency (or each
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‘coordinate’) by this factor in turn. The equations we’ve just written

down are nothing more than general versions of exactly these ‘one

currency at a time’ operations.

1010101
0101010
1010101 Arrays

The concepts and the notation
behind the vector space R

n will
probably be familiar to any
programmer, even though the
terminology may be different. A
‘vector’ is just the sort of data that
can be stored as an array, and a
vector in R

n is an array whose
elements are n ‘real’ numbers (in
practice, these real numbers are
approximations such as the floating
point numbers and doubles of the C
language).
If arr is an array variable then its
jth element is usually referred to by
arr[j] , which is very similar to the
‘subscript’ notation of Definition 13,
where aj is the jth coordinate of the
vector a. The only difference is that
in computing the ‘first’ element of
an array is usually called arr[0]
rather than arr[1] .

Once we start dealing

with more than two or three

coordinates, we normally stop

using different letters such

as (x, y, z) for the different

coordinates, for two reasons. The

first is that sooner or later we’d

run out of letters. The second is

that it’s actually easier to use the

‘subscript notation’ of Definition

13. How it will normally work

is that we’ll use one letter for

each whole vector (such as a),

and subscripts such as a1, a2,

etc. for the coordinates. In this

way, there are fewer letters to

keep track of, and you know

straight away that (for example)

‘a3’ means “the 3rd coordinate

of the vector a”. This sort of

notation makes it very easy to

extend the Euclidean distance

and cosine similarity measure of Chapter 4 to cope with any number

of coordinates.

5.5.2 The scalar product of two vectors

Now that we’re gradually becoming familiar with vectors in R
n,

and the way of writing the coordinates (a1, a2, . . . , an) for the vector

a, we can use these techniques to derive equations for computing

similarities and distances for general vectors. We’ve already used a

form of similarity score between our word vectors, by multiplying

their coordinates and adding the results. This ‘product’ of two vectors

has a special name.

Definition 14 Let a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be
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vectors in R
n. Their scalar product a · b is given by the formula

a · b = a1b1 + a2b2 + . . . + anbn.

We’ll see shortly that the scalar product is closely linked to both the

Euclidean distance and cosine similarity measures of Chapter 4.

5.5.3 Euclidean distance on R
n — extending Pythagoras’ theorem

to n dimensions

The two dimensional version of Pythagoras’ theorem (Section 102)

will already be familiar to most readers because it is widely taught

in schools. This enables you to work out the length of the hypotenuse

of a right-angled triangle (alternatively, the length of the diagonal of a

rectangle).

r

a = (a  , a  , a  ) 
1        2        3b = (b  , b  , b  ) 

p

q

1        2        3

FIGURE 37 The length of the diagonal
between the points a and b is the

square root of p2 + q2 + r2.

A less well-known but equally

interesting fact is that exactly

the same principle can be used

in three dimensions to calculate

the length of the diagonal of a

solid box or ‘cuboid’ (which is

the three dimensional version of

a rectangle). For example, if the

three perpendicular sides of a

box have lengths p, q and r, then

the diagonal of the box will have a length of
√

p2 + q2 + r2, which

is easy to prove.55 If the corners of the box are the points a and b,

which have coordinates (a1, a2, a3) and (b1, b2, b3) respectively, then

the lengths of these sides are p = b1 − a1, q = b2 − a2 and r = b3 − a3.

The length of the diagonal, which is the distance d(a, b) between a and

b, is therefore given by the formula

d(a, b) =
√

(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2. (5.10)

This is essentially the same as the 2 dimensional distance formula

given in Equation (4.6), though we’ve changed some of the notation.

For example, we can use the summation sign Σ (the capital Greek

55The proof works by applying Pythagoras’ theorem twice: first considering the

diagonal of the rectangular base of the cuboid, whose length is
p

p2 + q2; and then
considering the hypotenuse of the triangle made by this diagonal and the upright
distance z.
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letter sigma) to mean “the sum of all these numbers”, in which case

Equation (5.10) can be written using the shorthand

d(a, b) =

√

(

∑

(bi − ai)2
)

. (5.11)

This means exactly the same thing as Equation (5.10), once you’ve

‘expanded out’ the terms in the ‘
∑

’ expression. (If we wanted to

make it particularly explicit that the subscript i takes the values 1, 2

and 3 we’d write ‘
∑

3

i=1
’, though normally this will be unnecessary

because it should be clear from the context what the range of values

the subscript i takes.)

The same ‘index and summation’ notation we used in Equation

(5.11) can be used to express the scalar product of two arbitrary vectors

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) as

a · b =
∑

aibi.

(If unsure, you should check this against Definition 14 to convince

yourself that they’re saying the same thing.) As you can see, this

expression is much more succinct than the first version in Definition

14, and in the long run this brevity of expression is a great benefit. (If

you like, it’s a bit like using acronyms such as USA and UN for special

terms — it takes a while to get used to for a newcomer, but once you’re

used to it, the idea of writing out the full expression in words every

time you need it is far too cumbersome for real life.)

Example 7 Calculating Distances

To make this a bit easier to grasp, we’ll use Equation 5.11 to work

out the ‘distances’ between some of our word vectors in Table 4, which

contains the word vectors

bank = (0, 0, 4), guitar = (1, 0, 0) and money = (0, 1, 2).

Applying Equation 5.11 gives

d(bank, money) =
√

(0 − 0)2 + (0 − 1)2 + (4 − 2)2

=
√

0 + 1 + 4

≈ 2.24.

In the same way, we get

d(bank, guitar) =
√

1 + 16 ≈ 4.12.
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Comparing these two results, we find that guitar is ‘further’ from bank
than money is — a reasonable enough deduction.

However, there are problems with this technique — ‘large’ vectors

tend to be more distant from most other vectors than ‘small’ vectors.

For example, yet more calculations using Equation 5.11 tell us that

d(guitar, bass) ≈ 4.12 whereas d(guitar, fishermen) ≈ 3.16.

You can confirm this by looking again at Figure 36, where guitar is

slightly closer to fishermen than to bass. But this isn’t really because

guitar and fishermen have more in common than guitar and bass
— a brief glance at Table 4 shows that guitar and bass have some

coordinates in common whereas guitar and fishermen have none.

Instead, the smaller distance between guitar and fishermen is simply

because they’re both nearer to the origin point. You can almost think

of this as word vectors getting thrown out from a sort of ‘lexical

supernova’ — those words which get thrown the furthest end up

in deep space, while those which don’t get thrown very far end up

clustered around the origin, and closer to one another.

Using subscripts for coodinates and the summation sign Σ takes

a bit of mental gymnastics but it’s well worthwhile because you can

write down much more general formulas and equations without any

extra effort. In particular, it Equation (5.11) can be used to define a

distance function for a vector space of any dimension, without being

changed at all. So far in this section, we’ve presumed that we’re

working in R
3, where each vector a has 3 coordinates (a1, a2, a3).

But Equation 5.11 works in just the same way for longer vectors

(a1, a2, . . . , an), where the number of coordinates n can be as big as

you like. In this way, Pythagoras’ theorem can be adapted to give a

distance measure on the vector space R
n for any dimension n. This

measure is called the Euclidean distance measure on R
n, and since it

obeys the three metric space axioms (Definition 7), it is sometimes

called the Euclidean metric.

This is another example of the fairly ‘relaxed’ mentality you need

to accept the ways vectors and dimensions are used. The analogy

by which Pythagoras’ theorem is extended from 2 dimensions to 3

dimensions should be pretty clear: the next step of applying the same

numerical formulas to more than 3 dimensions isn’t complicated.
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However, the conceptual step of trying to imagine the Euclidean

distance function in R
4 as somehow measuring the length of the

diagonal of a 4 dimensional box is challenging, to put it mildly, if

not downright crazy. But you don’t need to do this to understand

word vectors, just as we don’t really need the diagram in Figure 36 in

order to understand the significance of the word vectors Table 4. The

main point behind Descartes’ contribution to this sort of mathematics

is that we don’t need diagrams for everything — we can work out the

distances algebraically, straight from the numerical coordinates. This

is the reason why these techniques can be so easily adapted to spaces

with more than 3 dimensions which we can’t visualise so easily.

5.5.4 Norms and unit vectors

Choosing a norm

Choosing the ‘right’ norm function
for a given vector space will depend
on your scientific purpose in
building the space. For ‘currency
vectors’, the only sensible way
to find the value of a whole
currency vector would be to use
exchange rates. At the time of
writing, £1 = $1.66, €1 = $1.18, and
¥1 = $0.0092, and so the vector
Dm = (6, 20, 15, 100) has the total
value or ‘norm’

6 + 20 × 1.66 + 15 × 1.18
+100 × 0.0092 = $57.82,

measured in dollars. In effect, we are
using a ‘weighted manhattan metric’
(page 103) to evaluate the length
of a currency vector. (In practice,
the ‘norm’ of a currency vector
should allow negative as well as
positive values, in case you have
more debts than assets — not all
financial ‘distances’ are positive.)

We now know how to calculate

the Euclidean distance and the

scalar product between two

vectors a and b. However, we’ve

also seen that neither of these

measures is an ideal way to work

out similarities and distances

between word vectors: with the

Euclidean distance, frequently

occuring words with large word

vectors end up too far from

most other words, and with

the scalar product, the same

frequently occuring words end

up too similar to most other

words. What we need is a way

of factoring out these unfair

advantages and disadvantages,

just as we wanted to even out

our graph similarity scores in

Section 4.3.1.

To do this, we measure the

‘size’ or ‘length’ of each vector,

which is its distance from the zero point or origin. Applying Equation
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(5.11) to the vectors 0 = (0, 0, . . . , 0) and a = (a1, a2, . . . , an), we have

d(0, a) =
√

∑

(ai)2.

This can also be expressed in tems of the scalar product, since
∑

(ai)
2

is the same as
∑

aiai which is just a · a. This is summed up in the

following definition.

Definition 15 The norm or length of the vector a is defined to be

||a|| =
√

(ai)2 =
√

a · a.

^

ba

a

b

^

FIGURE 38 Normalised or ‘unit’
vectors

Just as the norm ||a|| can be defined

as the Euclidean distance d(0, a), so also

the Euclidean distance between two

vectors a and b can be obtained by the

formula d(a, b) = ||b − a||, which is the

norm of the ‘journey vector’ from a to b.

So in many ways, whether we choose to

talk in terms of norms or distances is a

matter of convenience, just as whether

we think of a vector as a point or as a

journey from the origin to that point is a matter of convenience.

This ‘norm’ is exactly the factor we need to divide by in order to

remove any extra preference or penalty given to the word vectors of

frequently occuring words. It’s easy to check that if you divide every

coordinate in a by the norm ||a||, you are left with a vector whose norm

or length is equal to 1. This vector is written as a

||a|| or sometimes â, and

is called the unit vector of a. In other words, â is the vector in the same

direction as a whose length is just one unit. One simple way to think

of the unit vector â is as the projection of the vector a onto a sphere

or circle of radius 1, since all the points on this sphere or circle have a

distance of one unit from the origin (Figure 38). Since all unit vectors

have the same length, the only thing that distinguishes these vectors

is their ‘directions’.

We can now replace all the word vectors in Table 4 with their unit

vectors, giving the ‘normalised’ version in Table 5. What we’ve done

is found the norm of each row and divided each entry in the table by
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Document 1 Document 2 Document 3
bank 0 0 1
bass 0.447 0.894 0
commercial 0 0.707 0.707
cream 1 0 0
guitar 1 0 0
fishermen 0 1 0
money 0 0.447 0.894

TABLE 5 The vectors form Table 4 after they have been normalised

this number. To check that these normalised vectors are unit vectors,

simply go along each row in the table, square each individual number

and add together the results — you should get the answer 1 (or at

least, as nearly as our approximation to 3 decimal place will allow).

5.5.5 Cosine similarity in R
n

The scalar product of two normalised vectors corresponds exactly with

their cosine similarity, as defined in Section 4.2. We are thus in a very

useful practical situation: we can work out similarities between words

simply by working out the cosine similarities between their vectors in

Table 5 — by multiplying together the corresponding coordinates and

adding the results. For example, we now have

cos(guitar, cream) = 1 + 0 + 0 = 1,

cos(guitar, bass) = 0.477 + 0 + 0 = 0.477,

and

cos(guitar, fishermen) = 0 + 0 + 0 = 0.

Now we have that guitar and cream are the most similar pair (which

with the meaning of cream in Document 1 is what we should have),

that guitar and bass have a certain amount in common (in fact, they

have ‘one of the meanings of bass in common but not both), and guitar
and fishermen are completely unrelated. The skewing of such results

because of bass being a ‘longer’ vector, and recurrent problems of this

nature, are gone for good.

The cosine similarity of any pair of vectors (not just unit vectors)

can easily be obtained by taking their scalar product first and then

dividing by their norms (rather than normalising all vectors first and

then computing cosine similarities between these normalised vectors).
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This is probably the most usual way of defining cosine similarity, and

you will often see equations like

cos(a, b) =
a · b

||a|| ||b|| (5.12)

used in the literature to define the cosine similarity between two

vectors a and b. As we said in Section 4.2, this number can also be

thought of as the cosine of the angle between the vectors a and b,

which is a good way to think of this measure of similarity which

makes it intuitively clear that we are only interested in the directions,

not the lengths of the vectors (since the angle between two lines

doesn’t depend in any way on the lengths of those lines).

θ  i e θ Cosine similarity
and Euclidean distance

The cosine similarity and Euclidean
distance between two unit vectors
are closely related: if a and b are unit
vectors then it follows that

(d(a, b))2 = ||b − a||

= (b − a) · (b − a)

= b · b + a · a − 2a · b

= 2 − 2a · b.

It follows that the relative ranking of
points as being ‘more or less similar’
according to cosine similarity or
‘closer or further away’ according to
Euclidean distance will be the same
for unit vectors.
However, because the left hand side
in this equation is squared, cosine
similarity is ‘less transitive’ than
Euclidean distance. For example, the

vectors a = (1, 0), b = (
√

2

2
,
√

2

2
)

and c = (0, 1) all have length 1,
and although cos(a, b) = cos(b, c) =
√

2

2
≈ 0.707 which is quite high,

cos(a, c) is still 0.

To see that this way of

measuring the similarity

between normalised vectors

is a reasonable approximation

to measuring the similarity

between words, have a good

look at Table 6. This finally gives

the similarity between each pair

of word vectors. Remember that

this is all calculated from the

fragment of language contained

in Documents 1, 2 and 3 in

Figure 35, and in this tiny

sample many of the words only

occur with a fraction of their

possible meanings. Given this,

Table 6 does a remarkably good

job of modelling which words

are similar and dissimilar to one

another.

Such a table of similarities

between each pair of objects in

a collection can be called a data

matrix or an adjacency matrix.

Note that the main top-left to bottom-right diagonal is made entirely

of 1’s — this is because each word has a similarity of 1 with itself,
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bank 1 0 0.707 0 0 0 0.894
bass 0 1 0.632 0.447 0.447 0.894 0.400
commercial 0.707 0.632 1 0 0 0.707 0.915
cream 0 0.447 0 1 1 0 0
guitar 0 0.447 0 1 1 0 0
fishermen 0 0.894 0.707 0 0 1 0.447
money 0.894 0.400 0.915 0 0 0.447 1

TABLE 6 The cosine similarities between each pair of words in our model

because the length of each normalised vector is equal to 1. If we reflect

the table about this diagonal (thereby interchanging the rows and

the columns), notice that we get the same table. A table (or ‘matrix’)

with this property is called symmetric, because it is symmetrical in the

traditional “it looks the same if you reflect it in a mirror” fashion, and

because symmetric matrices can be used to represent relations which

are symmetric in the sense of Definition 2. This will become clearer

when we describe ways to transfer information between graphs and

vectors spaces in Section 6.7.

5.6 Document vectors and information retrieval

This chapter was meant to tell you how a search engine works, and

so far it’s been entirely about words and these things called vectors:

whereas one thing that all readers will probably know is that search

engines are about finding documents. In case you’re feeling tricked

into reading a whole chapter on mathematics under false pretences,

we will finish this chapter by describing how to create document vectors

so that we finally have a little system which can take a query made out

of any combination of the seven terms in Table 6 and rank the three

documents in Figure 35 according to their relevance to such a query.
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Programming cosine
similarity in
higher dimensions

If we use arrays to hold our vectors
and a for-next loop to work out
the cosine, cosine similarity in n

dimensions can be implemented
using exactly the same code as for
2 dimensions. If your vectors are
called vec1 and vec2 and their
cosine similarity is stored by the
variable cos , the code would read
something like

cos=0;
for( i=0; i<dim; i++) {

cos=cos+vec1[i]*vec2[i];
}

Norms and Euclidean distances of
vectors are just as easy to adapt
to n dimensions: in some ways,
computers find this easier than
people because computers don’t
care whether or not they can
‘visualise’ the vectors they’re using.

The trick is very simple:

we represent the documents

as being vectors in the same

space as the words, and then

we can compute similarities

between words and documents

just as we computed similarities

between pairs of words. In a

sense, we’ve already been doing

this — our word vectors have

had three coordinates, one for

their occurence in each of the

documents, and in this sense the

three documents have been used

as a basis for our space of word

vectors. One way to make this

clearer is to reason that if we had

4 documents in our collection,

we would need 4 columns in

the term-document matrix and

each word vector would have

4 coordinates, and so on for n

documents: so the number of

documents clearly determines the dimension of the space of word

vectors. Another way to see this pictorially is to consult the diagram

in Figure 36, where the 3 documents are clearly being used as 3

‘coordinate axes’. Representing each document as a unit vector in the

direction of its coordinate axis, we have the document vectors

Doc1 = (1, 0, 0), Doc2 = (0, 1, 0) and Doc3 = (0, 0, 1).

It’s now a simple matter to work out the cosine similarity between a

given query expression and each document in turn. For example, for

the query bass with vector (0.477, 0.894, 0), we get

cos(bass, Doc1) = 0.477, cos(bass, Doc2) = 0.894,

and cos(bass, Doc3) = 0.

If the user was returned the winning document (Doc2) and realised

that this isn’t the sort of bass they were looking for, they could add
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the term guitar to give the query bass guitar. Now the benefits of

using vectors really begin to pay off — we can simply add together

the vectors for bass and guitar to give a new vector,

bass + guitar = (0.477, 0.894, 0) + (1, 0, 0) = (1.477, 0.894, 0).

Comparing each document with this new query vector, Doc1 is

the winner with a cosine score of 1.477. In a very simple way, we

have combine the ‘meanings’ of two words to give a ‘meaning’

for a combination of words, for the first time in this book. This

very important process is called semantic composition, which we are

modelling here using vector addition.

You can carry on playing the game of working out query vectors,

comparing them with the three document vectors, and see if the

ranking you get coincides with how relevant the documents are to

your query.

That is basically how to build an information retrieval system —

that and nearly half a century of research into some really fundamental

questions about how to assess the importance of different terms

and documents (Google’s PageRank is one example of an answer

to such a question), how this vector model compares with other

conceptual models, how different terms might depend on one another,

how to cope with the engineering task of managing bigger and

bigger document collections and term-document matrices. The ‘wider

reading’ section at the end of this chapter will barely be able to scratch

the surface of these topics, though will try to give some good leads

which you can follow for yourself.

This may seem like a lot of mathematics in order to end up

multiplying a few numbers here are there and coming up with a

ranking of our three documents. In many ways, this is one of the

vector model’s great strengths — the mathematics in this chapter

may have had some strange names and symbols and far too many

dimensions, but at the end of the day this is nothing more than a

shorthand for adding and multiplying lots of different numbers. These

numbers can be extracted straight from a document collection without

any need for deep linguistic analysis, which is one of the main reasons

that information retrieval has proved to be such a widespread and

successful branch of natural language processing: your system really
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doesn’t need to know much about language at all. (If you just stop for

a moment to think about how much more trouble we’d have had in

building a simple system that could read out a spoken version of three

documents or translate them into a different language getting both the

grammar and the meaning correct, I think you’ll agree that building

an information retrieval system was pretty easy.)

Another vital point is that the toy system we’ve described in this

chapter is scalable. This is where the mental gymnastics of working

in many dimensions pays off. It may have seemed like unnecessarily

hard work to develop all this n dimensional mathematics when most

of the time we were just working in 2, 3 and 4 dimensions. But right

at the end of the chapter we realised that we were using a ‘dimension’

for each separate document. Now, if we’d confined ourselves to a

comfortable mathematical system that could just cope with 2 or 3

dimensions, we’d have no hope of coping with a bigger document

collection. But instead, we put in the hard work to use a mathematical

language that can be adapted to any number of dimensions: so the

same system can be used for a document collection of any size.56

I’d like to finish this chapter with two observations which take

us back to the concepts of Chapter 1. We said in Section 1.4.4 that

the ‘measurements’ we made of the extent to which different words

occured in different relationships or contexts would be discrete, but

that many of the models we would build from this information would

rely on continuous mathematical techniques. The vector spaces of this

chapter are precisely the sort of continuous model we were referring

to. We started by counting discrete whole numbers (for example, in

Table 4), but by the time we had normalised these vectors in Table 5,

we needed all sorts of numbers in between 0 and 1, and in principle

the only limit on the ‘granularity’ of these numbers is how many

56In the presentation in this chapter, I have departed slightly from the approach
in most textbooks, which uses the words or terms as coordinate axes from which
to represent both document and query vectors. This is mainly because it is a
better introduction to the way we will use word vectors in the rest of the book,
where we are much more interested in computing word-word similarities than (say)
document-document similarities. Also, it was much easier to try to draw Figure 36
as 7 word points in 3 ‘document dimensions’ than as 3 document points in 7 ‘word
dimensions’! However, the concepts are very much the same: I honestly don’t know
whether the difference would have a noticeable practical effect when building a search
engine from scratch.
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decimal places it’s worthwhile keeping for each of them. When we’re

just comparing the relevance of three different documents, it doesn’t

matter so much: when we’re dealing with a document collection the

size of the World Wide Web, we may need more and more ‘in between

numbers’ to keep track of ever finer distinctions of importance and

relevance. The old binary distinction into relevant and non-relevant

documents could not support a user who needed to know which out

of thousands of ‘relevant’ documents were the most relevant, and this

challenge has naturally led researchers to study continuous methods

such as vector spaces, fuzzy set theory and probability.

In a sense, our models have come all the way from Chapter 2, where

we studied relationships between words almost without using any

numbers at all, to the work in this chapter where words have been

represented using only numbers, obtained by measuring how many

times a word occurs in different documents. Geometric comparisons

such as longer or shorter, closer or further away, have been made

purely by doing calculations with these coordinates. This has all

been made possible by the ‘Cartesian revolution’ in mathematics

which enabled geometric problems to be described and solved using

relationships between collections of numbers.

Wider Reading

The introduction to vectors given here is necessarily brief and very

informal. Those who wish to go deeper or more thoroughly into any

of the concepts introduced here should consult a proper book on linear

algebra. Chapters 2 and 3 of (Jänich, 1994) are particularly appropriate

and readable: I also sometimes recommend (Vallejo, 1993).

The rest of this book will describe many important operations with

vectors, and the ways they have been used for analysing linguistic

information: a lengthy list of ‘wider reading’ on this topic will

gradually emerge. However, readers who are particularly interested in

the particular uses of vectors for information retrieval should consult

the classic text of (Salton and McGill, 1983, Ch 4), and the summary

contained in (Jurafsky and Martin, 2000, §17.3) which gives a good

pictorial overview.

The principal mathematical models used for information retrieval

systems are the vector, probabilistic and fuzzy set models, all of which
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are discussed in Baeza-Yates and Ribiero-Neto (1999). Fuzzy sets for

information retrieval are discussed at length in (Miyamoto, 1990),

which starts with a good introduction to what fuzzy sets are, and

also considers fuzzy-set models for some of the traditional thesaural

relationships such as ‘Broader Term’ which we met in Chapter 2. One

of the most interesting probabilistic models is the ‘inference network’

used in the INQUERY system (Turtle and Croft, 1989, Callan et al.,

1992): such networks use probability theory to find important paths

in directed graphs of the sort we studied in Chapter 3, in this case the

path that leads between a query and relevant documents.

A unifying theme behind these three models is that normalised

vectors, probability distributions and fuzzy sets are all mathematical

techniques which replace binary values (0 or 1) which signify ‘not

belonging’ or ‘belonging’ with continuous values (0 or 1 or anything in

between) which signify ‘partially belonging’ or ‘probably belonging’.

There are some practical differences between the models (for

probability distributions, the sum of all the individual probabilities

must be equal to 1, whereas as we’ve seen for normalised vectors, the

sum of the squares of the individual coordinates must be equal to one,

at least with the Euclidean norm), but it seems at least possible that

these are really different implementations of one underlying model.

Other important topics in information retrieval include weighting

strategies, user models and interfaces, linguistic operations such as

stemming words (such as fishermen) to their lexical roots (such

as fisherman or even fish) and of course engineering. Rather than

try to give piecemeal and unsatisfactory pointers to each of these

topics, I recommend consulting the indexes of general books such

as (Salton and McGill, 1983), (Kowalski, 1997) and (Baeza-Yates and

Ribiero-Neto, 1999), and also the excellent range of papers collected in

(Sparck Jones and Willett, 1997).

Those interested in the mathematical development of vectors

should certainly delve into the works of Descartes: there is a

particularly beautiful (and as usual, unbeatably priced) version

available from Dover publications which contains a facsimile of

Descartes’ original French manuscript next to the English translation.

An excerpt from the vital first book is contained in (Smith, 1959, p
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397-403), and a good secondary historical account can be found in

(Boyer and Merzbach, 1991, Ch 17).

The technique of using vectors to represent points in space grew

from the work of Sir William Rowan Hamilton (1805-1865) on

quaternions, in which he first describes the addition of a ‘fourth

dimension’ to a mathematical system Hamilton (1847). At the same

time, during the 1840’s a little known German high school teacher

called Hermann Grassman (1809-1877) was developing a system of

spaces called Ausdehnungslehre, and this work contains our modern

notion of vectors in any number of dimensions (Smith, 1959, p

684-696). Since his purpose was to represent a general concept with

any number of dimensions, our word vectors owe much more to this

foundation. Grassmann was a specialist in Sanskrit literature and also

made contributions to Indo-European linguistics, raising the question

of whether Grassmann’s inspirations and our modern treatment of

dimensions are rooted in much more ancient sources.

In cognitive science, the use of coordinates and dimensions to

model mental the cornerstone of the Conceptual Spaces of Gärdenfors

(2000). In particular, the first chapter of this book contains an excellent

introduction to the notion of dimensions, and the way different

stimuli such as taste and colour can be represented as points in such

a conceptual space. For example, colours seem to have a clear ‘3

dimensionality’ about them, whether those dimensions are ‘red, green

and blue’ or ‘hue, brightness and chromaticity’.

No bibliography about dimensions would be complete without

mentioning Edwin Abbott’s novel Flatland, originally published in

1884. This slim book (under 100 pages) is the darling of every

enthusiast who’s ever read it and is available for $1.50 (from Dover, of

course). In Abbott’s story (also a barbed satire against the hierarchical

rigidity of Victorian society), the world of a humble square is

rocked by the intersection of a solid sphere with his two-dimensional

existence. At first resistant, the square becomes convinced that a

third dimension is possible, and through trying to explain this to

the other polygons he becomes a prophet, a heretic and finally a

prisoner, clinging forlornly to the hope that his teachings will one day

inspire a new generation “who shall refuse to be confined to limited

Dimensionality”.
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