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Abstract. We describe a range of designs for supporting rich search
queries in a peer-to-peer network. Our implementation is based upon
uniquely identified data objects which are replicated upon request by
agents called Shepherds. Several abstract data structures are built upon
this framework, supporting dataset management, lexical search, and dis-
tributed GIS interfaces in an application called the Geobrowser. Our re-
sults demonstrate that it is possible to layer higher-level data structures
upon a basic peer-to-peer transport and replication layer. When users
perform a given query, parts of the index as well as the query results
themselves are shepherded to the user’s local venue. A natural benefit of
this approach is that mobile users can repeat previous searches if they
become disconnected from the rest of the network. Some of the data
structures that prove to be successful are peer-to-peer adaptations of
traditional indexing structures. We review some of the properties that
lead to successful designs in this domain, giving examples of deployed
systems in the Geobrowser.

1 Introduction and Related Work

This paper presents methods by which indexes supporting rich content-based
search interfaces can be built in a peer-to-peer system, by layering sophisticated
index structures on a common object location and routing infrastructure.

Cooperative systems for storage and collaboration have experienced a surge
of investment and activity over recent years. Of particular interest are flexible
decentralized systems, such as Gnutella [1] and OceanStore [2], where nodes may
join and leave at any time, and where peer-to-peer replication ensures the high
availability of data. One of the major drawbacks to these systems, however, is
the lack of cooperative indexing and querying techniques. Users expect to be
able to search these systems just as they search the Web, with the same net
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performance and quality of results, even though current Web search engines
are supported by coordinated and/or centralized systems built on guarantees
unmet by peer-to-peer storage. The general information retrieval methodologies
outlined for coordinated distributed systems, on which much research has been
conducted [3, 4], are not directly applicable.

In peer-to-peer systems, basic one-dimensional queries such as keyword and
prefix search are currently supported, but in much the same manner as routing
or messaging (see, for example, [5–8]), with logarithmic guarantees of low order.
Nodes answer queries about data objects that they store, and route queries they
cannot directly answer to a more knowledgeable host. Hybrid techniques improve
performance by balancing local work with global work, e.g., by sharing a global
keyword lexicon.

Replication of search structures, such as B-trees, is not new [9–11]. Direct
storage of search structures in a persistent object store, where chunks of data
have unique identifiers but no type, has also been examined [12]. Experiments
with replicated search trees have shown that they lead to high availability, over-
coming some of the bottlenecks associated with hierarchical structures [13, 10].

But even in systems that make use of index replication, the indexes are gen-
erally treated in a way that is distinct from other data — index components
are not freely replicated in the same epidemic manner,2 partly because the in-
formation they carry is tied to specific nodes in the system. One approach that
does propagate index (key , value) pairs epidemically in a peer-to-peer network
is the Passive Distributed Indexing system of Lindemann and Waldhorst [11,
14]. While this work is the nearest in spirit to our approach, it still treats index
replication and document propagation separately using different infrastructure.

We take a different approach. Instead of having support for a few specific
query types (such as keywords or prefixes) built into the infrastructure, we pro-
pose a deliberate layering of search functionality on top of the basic object
location and routing infrastructure. Our system models index structures using
exactly the same attribute-value syntax as is used to model other data objects,
such as those used to represent objects in the physical world. Optimistic repli-
cation [15] is used to to disseminate the components of a shared index, just like
any other data.

Our experiments demonstrate the potential of this approach in an appli-
cation called the Geobrowser, which is a portal to a peer-to-peer “Universal
Database” network [16]. As in the early Visage system [17] and its descendants,
all information objects in this network are represented in u-forms, a u-form be-
ing a mutable bundle of attribute-value pairs identified by a universally unique
identifier or UUID. In the peer-to-peer version of this architecture, u-forms are
optimistically replicated upon demand to many different venues in the network
by artificial agents called Shepherds. An index that enables persistent search
operations (in the sense that in performing a search, a user will have the data

2 In this context, the term epidemic is used to describe replication strategies in which
a new version of an object can be transmitted between any two venues that are in
contact.



necessary to repeat that search replicated to their local venue) is described as
Shepherdable.

This approach carries immediate benefits. Since replication is a core com-
ponent of peer-to-peer systems, our system automatically gains the advantages
afforded by current peer-to-peer storage layers, such as high availability [18] and
local caching to support offline activity. Since u-forms are extensible and have
dynamic schemata [19], it is always possible to introduce new data structures
enabling specialized query functionality or optimizations in performance. In this
paper we describe specific implementations of B-trees [20] and R-trees [21], scal-
able collections (that can be used to support many structures including inverted
indexes [4]), as well as a novel self-indexing spatial structure that supports the
Geobrowser’s distributed mapping application. Each of these structures has been
built and optimized using standard u-form data objects, without requiring any
modification to the underlying storage and transportation layers.

We also believe that separating content-driven indexes from the storage and
transportation layers will have long term benefits. This is because our system
will be able to take advantage of improvements in peer-to-peer storage and trans-
portation, and advances in these layers will automatically improve indexing and
search reliability and performance with minimal or no changes to application
layer code.

The long term success of the Geobrowser platform depends on collabora-
tive addition of data, which implies collaborative contributions to datasets and
indexes. Prior work with replicated structures assumes either the existence of
a coordination mechanism for contributors to a shared index: a load balancer
[10, 9]; a locking mechanism; or a recovery mechanism [22] to ensure that ac-
tions on the global index can be effectively serialized. Our general approach to
collaboration with u-forms is discussed in more detail in [23].

The rest of this paper is structured as follows. Section 2 describes the un-
derlying database architecture used in our implementations. Section 3 begins
to describe higher level u-form data structures, with a design for distributing
large collections of u-forms into several navigable chunks. Section 4 describes
the use of shepherdable B-trees for search in a totally ordered keyspace, and
Section 5 describes a shepherdable R-tree structure with optimizations for dis-
tributed spatial search. Section 6 gives the results of some preliminary tests of
the R-tree data structure against a large reference collection. Section 7 describes
the novel self-indexing structure used for the Geobrowser’s distributed mapping
environment. Section 8 gives a brief summary of some of the issues involved in
creating and maintaining our distributed index structures, and Section 9 ana-
lyzes some of the data structures that were prototyped but performed poorly in
the Shepherds system.

2 U-forms, Replication and Shepherding

This section describes the underlying database architecture used in our applica-
tions, emphasizing some of its most relevant properties. All of the implementa-



tions described in this paper use a “Universal Database” architecture in which
all information is represented in “u-forms”, a u-form being an extensible bundle
of attribute-value pairs identified by a universally unique identifier or UUID. A
more detailed view of u-forms and the VIA repository is given in [16].

A formal similarity has been suggested between the (UUID, attribute, value)
triple and the (URI, predicate, value) structure of the Semantic Web’s RDF
graphs [24] (and numerous other “triple store” structures for knowledge repre-
sentation). It is important to note that a u-form in itself is an abstract data
object, and physical copies of u-forms can be serialized using many formats,
including (for example) XML. For efficiency reasons, our repositories represent
u-forms using a recursive bytecode serialization called VSMF (Visage Standard
Message Format).

The u-form architecture developed out of the Visage projects for collabora-
tive information visualization [17, 25], and the policy of representing information
in u-forms is referred to as the Visage Information Architecture (VIA). The ar-
chitecture is currently used to support commercial information collaboration
applications such as CoMotion and CPOF (Command Post of the Future, a
command and control system used by the US military [26]), as well as MAYA
Design’s Geobrowser and a variety of community information websites [27]. An
important requirement of the Geobrowser design is that any information a user
accessed in the past when online should still be available offline, along with the
search functionality used to locate and select that information.

An important property of u-forms is that their values may contain relations
(that function as pointers or external references) to other u-forms. U-forms them-
selves are by definition location independent, and thus may be replicated to many
different venues in the system. This includes the local venue of a user whose con-
tact with the network is through a mobile and sporadically connected device.
Over the years, our implementations have increased in scale, making the adop-
tion of peer-to-peer implementations naturally appealing. The adaptation of the
u-form concept to a peer-to-peer environment is managed by artificial agents
called Shepherds. Client applications interact with the Universal Database by
reading attributes of u-forms from their local repository interface, and writing
the values of certain attributes. The shepherds system makes this possible by
performing the following actions:

– If a user or client requests a u-form which is not present in that user’s local
repository, the shepherds try to locate a copy in the network and replicate
an instance of that u-form to the user’s local venue.

– The shepherds try to ensure that all replicas of a u-form hold the same
contents.

Instances of u-forms may be located in the network by a variety of indexing
techniques such as manually configured routing tables, centralized Google-like
indexing services, and/or distributed hash-tables [28, 29]. Considerable research
and development has been carried out by ourselves and others on this problem,
and while it is difficult, initial solutions exist and it is reasonable to believe that



they are not bounded in scale. For the purpose of this paper, we assume that
the storage layer works efficiently and scales effectively.

Nonetheless, some operations are costly in our system. These include:

– Following “null” references. If a client somehow generates or receives a
UUID of a u-form that does not exist anywhere in the network, the process
of requesting this u-form causes expensive and unrewarding network traffic,
also causing high latency for the user before a “null” answer is returned.

– Conflicts. If two users update the same u-form concurrently, this will gen-
erate a conflict when the shepherds realize that there are two incomparable
versions of the the u-form.

In general, it is difficult to resolve u-form conflicts automatically, and a more
stable approach is to design information architectures for collaboration that dis-
tribute authority and avoid conflicts on the same u-form [23]. This is of relevance
when trying to organize writes to shepherdable indexes.

3 Managing Collections and Datasets

Fig. 1. Visage users morph collections of
objects from one display to another

In this section, we begin to give
examples of distributed data struc-
tures created out of u-forms. In the
earliest examples of Visage, shared
collections are represented in a sin-
gle collection u-form containing sev-
eral UUID references in its members
attribute. Users can add/remove u-
forms to/from a collection using
drag and drop. The whole collection
can be dragged onto a map frame
or a bar chart, enabling a user to
see and select objects in certain ge-
ographically or statistically defined
regions.

Unfortunately, the method scales
poorly. This is because the basic op-
eration of reading or writing an ar-
ray of UUIDs to the repository is linear in the length of the array. For large
collections, a better method is to break such collections up and distribute their
members over several linked u-forms. One simple way to do this is to chunk the
collection into smaller collections of (e.g.) 100 members each, and create a linked
list structure out of the new chunks. By adding extra information to this data
structure, performance can be enhanced considerably, as follows:

– A pointer from the head to the tail of the collection can guarantee (amor-
tized) constant time append.



– By recording an associative hash of the member UUIDs on the head node,
the fact that edits have been made can be recorded, and checked by other
users without scanning the collection.

– By adding a B-tree structure [20, p. 262] or skip list pointers [30], access to
any part of the collection can be provided in O(log N) space and time.

– Given suitable annotation and refactoring of child node counts or skip prob-
abilities, an entire collection can be added recursively to another collection.

Fig. 2. Interface enabling distributed
edits of a collection

The combination of these techniques
leads to the creation of a u-form data
structure that we call a “Navigable Re-
cursive Scalable Collection”. Such a col-
lection, displayed in the Geobrowser in-
terface that enables peer-to-peer brows-
ing, navigation and editing of the collec-
tion, is shown in Figure 2.

In large collections, the positions for
items in scalable collections are com-
puted from knowledge of how many de-
scendants each individual node in the
B-tree has, and so B-tree nodes in scal-
able collection implementations have to
carry enough information about how
many descendants they have for quick
comparison with their siblings.

Such a design is typical of the is-
sues involved in adapting complex data
structures to a peer-to-peer environ-
ment for distributed collaboration. A
scalable design for building and editing
a collection can be achieved using tra-
ditional techniques such as B-trees [20, pp. 262-265] or skip lists [30]. Neither
method requires all of the member u-forms to be present in any one location, and
enables the construction of user interfaces that perform well for the collection
management operations. The choice between these data structures depends on
intended usage patterns. We have found the B-tree representation to be more
space efficient for static collections. On the other hand, skip lists (being a proba-
bilistic data structure) are more robust in the case where several users in different
venues may be editing the collection frequently and asynchronously.

The Geobrowser interface demonstrates that the scaling problem can be
solved so that a collaborator in a peer-to-peer network can have apparent access
to a dataset containing several millions of u-forms, while only needing to shep-
herd the u-forms they are interested in and a handful of navigational u-forms
that enable the user to find information effectively.



4 Distributed B-tree Indexes for Lexical Search

Once a user has access to a large distributed dataset, it is natural to wish to
find (for example) all u-forms in a collection whose name attribute contains
a particular word. Such functionality is provided using the support of a B-tree
structure [20, pp. 262-265], represented in u-forms to make a shepherdable index.

The main difference between our use of B-trees for building search trees, and
their use for managing navigable scalable collections in the previous section, is
that the records in search trees are key-value pairs, whereas in the scalable col-
lection, the records are simply values (UUIDs of member u-forms) whose ‘key’
is effectively its position in the collection. The search tree behaves like a dis-
tributed associative array or dictionary, whereas the scalable collection behaves
like a distributed array.

PA B-Tree Index Head
~018b3...
roles: B Tree Index Head Role
btree_root: ~18b3d...
fanout_min: 25
fanout_max: 50 
resultslist_max_length: 2
node_kinds: [internal, leaf]

~018b3d... 
roles: B Tree Index Node Role
type: node
children: 
   [[aaronsburg,~018b...],[mantua,~018b...]]

Lower nodes for keys 
less than  mantua

Lower nodes for keys 
greater than  mantua

Fig. 3. Upper nodes in B-tree of names of populated places in Pennsylvania

An example u-form B-tree for searching for populated places in Pennsylvania
according to their name attribute is shown in Figure 3. To search the tree for
a particular key such as pittsburgh, one proceeds from the head node to the
root node, at which point the keys aaronsburg and mantua are available. Since
pittsburgh is between mantua and the end of the alphabet, the next u-form
requested is the one whose UUID is listed after the mantua key in the root node,
and so on.

The most important attribute that enables this descent is the children at-
tribute, which stores a sorted array of (key ,UUID) pairs. The rule is simply that
the query should follow the UUID relation of the highest key that precedes the
query expression.

The search starts at a separate “head node” rather than a constant “root
node”, because B-tree root nodes are occasionally split and subsumed due to



rebalancing. The head node records structural data about the tree, including
the maximum and minimum fanout allowed in nodes below the root.

There is also a resultslist max length attribute that is used for deciding
how many results to pack into a leaf node, based upon how many values match
a particular key. For example, the query term highland matches with the name
attribute of 19 places in the dataset, and since this is a reasonably large number,
this collection of results is posted in a separate u-form. On the other hand, the
term versailles only occurs in 2 placenames, and as an optimization, these 2
results are placed directly in the leaf node.

This is typical of a standard trade-off in information retrieval, between the
structure of the key-space or lexicon, and the structure of inverted indexes or
‘postings lists’ (see e.g., [4, §4]). In choosing to push some of the postings into
the lexicon itself, we are reducing latency for infrequent lexical items, at little
extra up front space cost.

Other applications of the B-tree data structure for lexical searching opera-
tions are as follows.

– Full text search. Utilizes the B-tree data structure to keep a lexicon, and
the scalable collection of Section 3 to store the inverted indexes or post-
ings lists. Extra information for more sophisticated indexing, including term-
weights and offsets, can be placed in attributes parallel to the members of
the postings list collection.

– Boolean semantics for collections. The scalable collection design of Sec-
tion 3 does not enable an efficient Boolean membership test. Such a require-
ment can be supported by creating and maintaining an auxiliary B-tree
whose keys are the UUIDs of the collection, ordered lexically.

– Virtual references. Another use of UUIDs as keys is to record when one u-
form has referred to another. The use of indexes of this sort to store virtual
references in support of backpointers, standoff annotation and publisher-
contributed content is described in [31, 23].

5 Distributed R-tree Indexes for Spatial Search

This section describes the design and use of a shepherdable index for low-
dimensional continuous data, which enables the Geobrowser to dynamically find
and display local content from large geospatial and geotemporal datasets.

The most stable solution to this problem has in practice been a distributed
R-tree approach. R-trees were introduced by [21] and are described along with
related structures in [32, §6.3]. In an R-tree, the index keys are bounding boxes
in an N -dimensional key space, and are ordered by containment. That is, the
children of a particular tree node A are index nodes or data items whose bound-
ing boxes are contained in the bounding box of A. New items can be added to
the index by adding them to the node whose bounding box volume is minimally
increased by the insert operation, and nodes are (heuristically) split by trying to
minimize overlap and minimize the amount of “dead space”, that is, the volume
within each bounding box that is not actually contained in any of its children.



For many of the datasets we wish to visualize in the Geobrowser, there are
some items that are considered more important than others, and these items
should be presented first. For example, for a dataset of world populated places,
large cities such as Shanghai should be presented before smaller towns and vil-
lages. In many user interfaces, it is appropriate to limit the number of items
shown to (for example) 100 objects from each dataset.

5.1 Priority Item Annotation

The user experience can be greatly enhanced by adding prioritized items to
higher nodes on the R-tree.3 Prioritization enables a search to return the p most
important items within a particular bounding box, without searching all the
way down to leaf nodes in the tree to obtain these items. A simplified example is
shown in Table 1, which contains the main attributes and values of the current
root node of the u-form index of the world’s populated places. This shows the
bounding boxes of the children, and the first five prioritized items (Shanghai,
Mumbai, Seoul, Moscow, Manila). A query that only wants to find the world’s
five or fewer most populated places only needs to look at this u-form.

Table 1. Current root node of World Cities populated places index. The items in italic
type are UUID relations to other u-forms.

aggregate child count 2462019

bbox [[-54.93, -179.98], [90.0, 180.0]]

children [[(no name), [[-51.8, -179.98],[90.0, 179.75]]], [(no
name), [[-54.93,-160.20], [70.96, 178.87]]], [(no name),
[[-47.05, 66.95], [36.4833333, 180.0]]]]

priority items [[Shanghai, [[31.22, 121.45],[31.22,121.45]], 0.992],
[Mumbai, [[18.97,72.82], [18.97, 72.82]],0.991], [Seoul,
[[37.56, 127.00],[37.56, 127.00]], 0.990], [Moscow,
[[55.75, 37.61], [55.75,37.61]], 0.990], [Manila,
[[14.60,120.98], [14.60,120.98]], 0.989]

Another simple way to optimize query performance is to annotate child point-
ers with an extra property listing the maximum importance or priority score of
any item that can be reached via that node. This is called Maximum Importance
Annotation, and is used to prune searches when the Geobrowser interface spec-
ifies that it will only display information above a certain priority or importance
score.

3 Note that adding priority items to higher nodes is different from the “prioritized R-
tree” data structure of [33], which optimizes worst-case search by adding prioritized
nodes, rather than optimizing simple cases by adding prioritized items.



6 Reference Dataset and Performance Tests

The development work described in this paper was carried out by MAYA Design
as part of the Information Commons and Geobrowser projects. The immediate
purpose of this effort was to create an index with good query performance to en-
able Geobrowser users to access to find places from the Information Commons
Gazetteer [34], a public resource of populated places and worldwide adminis-
trative divisions, containing fused information about over 5 million populated
places and their political affiliations. The bounding boxes in the R-tree index for
this dataset are shown in Figure 4, which gives an interesting statistical picture
of world population distribution.

Fig. 4. Leaf-nodes in the R-tree representing World Populated Places.

Because the path through the index is replicated as well as the results of
the query, subsequent queries can make use of relevant portions of the index.
Table 2 shows how some simple queries are affected by this caching property.
For each test condition, we measured the time cost of performing a query on an
empty local venue, thus inducing index replication over the network. We then
wiped the local venue of all u-forms, and performed a related query. Without
wiping the local venue, we performed the original query again, and measured the
speed-up gained by being able to take advantage of cached index structure from
the related query. Replication was performed over a wide-area network. The test
query was a geo-spatial bounding box. The related query types were:

Repeated The related query was identical to the test query, so all of the index
structure could be re-used.

Sub The related query was a bounding box properly containing the test query.
Again, all of the index structure could be re-used.

Expanded The related query was a bounding box properly contained in the
test query. Only some of the index structure could be re-used.

Adjacent The related query was a bounding box adjacent to the test query.
Only some of the index structure could be re-used.



Distant The related query was a bounding box very distant from the test query.
Very little of the index structure could be re-used.

Table 2. Results summary of R-tree query performance experiments

Related Query Type Initial Query(s) Subsequent Query(s) Speed-Up Factor

Repeated 4.5 0.77 5.8x
Sub 2.8 0.53 5.4x
Expanded 3.6 2.1 1.8x
Adjacent 4.1 1.7 2.4x
Distant 7.7 8.2 0.95x

When we can re-use a significant portion of the index structure, performance
is naturally much better. When we can re-use less, a corresponding drop in
performance improvement is seen. When we cannot re-use any significant portion
of the index, we see that natural variance in the testing overwhelms any benefit
from caching: the subsequent query for the “distant” condition is actually slightly
worse than the original.

Given space constraints, we elide measurements of similar performance im-
provements for B-tree based structures. The measured performance improve-
ments are more noticeable in real applications for geo-spatial queries. We believe
this is because that query locality is more natural in the geo-spatial domain than
it is for, e.g., keyword searches.

7 Distributed GIS Data and Recursive Self-Indexing

The most novel index structure we have so far built upon the u-forms and shep-
herds infrastructure supports distributed mapping in the Geobrowser. Not only
point data items, but the vector shapes of the base maps themselves, are repre-
sented in u-forms and found by following references to new u-forms and request-
ing these u-forms through the shepherds system.

Naturally, a list of vector points can easily be expressed as an attribute of a
u-form, so geometric objects can be represented in u-forms. The design challenge
in this domain is to do this in such a way that shapes can be suitably factored and
composed to present a persistent and appealing user interface in a peer-to-peer
network. Basic requirements of the Geobrowser map interface include:

1. It should be possible to drag out a spatial object into its own frame, add it
to a collection, and add comments, just as with other phenomena in Visage
interfaces.

2. The user should see a basic outline map of the area of interest as soon as
possible.

3. More detailed shape data should be rendered as the shape u-forms become
available.



4. The user should be able to zoom in to obtain greater levels of detail in
specific areas.

Requirement 1 is supported by representing the shape of each object in a
Cartesian coordinate frame that is optimized for the object in question. (For
example, with shapes on the earth’s surface such as boundaries of landmasses
and political subdivisions, the approximate centroid is located, and then the
local east, local north, and outward normal are used as orthonormal x−, y− and
z-axes.)

Requirements 2, 3 and 4 are met in the following way. A simplified outline
shape is calculated using the Douglas-Peucker line simplification algorithm [35].
This outline shape then stores relations to more detailed line segments, along
with information saying which points in the main shape should be replaced
by the extra detail in the subshapes. An example of this approach to shape
rendering is shown in Figure 5, which depicts the Supercontinent (Asian, African
and European landmasses) with both the first level (roughest) and second level
(slightly more detailed) decomposition. The first level points are contained in
a single u-form, whereas the second level points are broken across 10 different
u-forms of roughly similar length. In Figure 5, both levels are depicted together
for explanatory purposes, though in the actual Geobrowser, the second level
data actually replaces the first so that there is a single coastline. The benefit is
that the user only needs to shepherd in the u-forms containing more detailed
information for the parts of the world that are of interest. Once accessed, these
local detail u-forms stay available the user for as long as they are wanted.

To support all of this functionality, shapes must be able to include one an-
other recursively. Sometimes shapes are included without replacement (for exam-
ple, adding an island to a continent in requirement 1), and sometimes subshapes
replace parts of their parent shapes (meeting requirement 3). In both cases, a
parent shape creates an annotated collection of child shapes, for each child shape
giving:

1. The bounding box of the child shape in the parent’s coordinate frame; and
2. The linear transformation used to map the child points into the parent frame.

In this way, shape u-forms act as containers for lists of geometric points, and
as an index to subsidiary shapes. These subsidiary shapes may be topologically
distinct, or may be more detailed parts of the main shape itself. In this way, a
shape u-form acts as an index to its own parts, and is described as a self-indexing
structure.

A rendering algorithm proceeds by:

1. Testing the bounding boxes in turn to see whether the shape intersects with
the user’s field of view; and

2. Retrieving the child points, and using the linear transformation given to
map the points to the parent frame, from which they are mapped to screen
coordinates.



Fig. 5. Shape of the Supercontinent (orthogonal projection), showing first and second
levels of detail combined.

These mappings are all calculated using standard linear algebra as used in
many computer graphics algorithms (see e.g., [36, §5.6]), and can be optimized
significantly by hand-coding the floating point operations for our specific use
case. Since all shapes use a form of Maximum Importance Annotation (as de-
scribed in Section 5.1), we can control the amount of information presented to
the user, and a judicious choice of relative priorities and important features en-
ables the Geobrowser to present a high quality user experience with acceptable
latency in the interface.

The results are demonstrated in Figure 6, a screenshot from a version of the
Geobrowser delivered to the Greater New Orleans Non-Profit Knowledge Works
(www.gnonkw.org) as part of the New Orleans redevelopment effort following
the Hurricane Katrina disaster. This interface actually combines many of the
technologies described in this paper. The category tree on the left hand side is
modelled using a scalable collection: so by using the interface shown in Figure 2,
users can easily add new categories to the map and new items to a category.
Each of these scalable collections also has a u-form R-tree index, so the items
that intersect with the user’s map panel can be efficiently identified. Shapes
such as the coastline, the water features, and the roads, are all represented using
the recursive u-form shape format described in this section: once an object is
returned by the R-tree index, if it has a geographic shape attached, the extended
shape of the object can be rendered.



Fig. 6. Map showing part of New Orleans (orthogonal projection), with data such as
locations of streets, parks, and levels of arsenic concentration.

An interesting side effect of our approach to shape simplification and re-
assembly is that it can reduce the data required and hence the computational
complexity of performing a point in polygon test, which is traditionally an O(n)
operation, or at best, O(log(n)) for convex polygons [37], where n is the num-
ber of vertices in the polygon. Recommended optimizations for point in polygon
tests involve (for example) dividing the line segments into quadrants and finding
integer versions of the necessary arithmetic [38].

The Douglas-Peucker simplification produces a “tolerance” measure ε along
with the simplified shape, where ε is the maximum distance that a point in the
original shape is from the simplified shape. Using standard O(n) methods, it is
easy to write an algorithm that (i.) tests whether a test point is inside or outside
the simplified polygon, and (ii.) measures the minimum distance from the test
point to the simplified polygon. If this distance is greater than ε, then the result
also holds for the fully detailed polygon. Otherwise, the u-forms containing more
detailed points for the nearby segments are requested and the test is repeated.
While this algorithm produces appreciably faster results, formal analysis of this
algorithm’s complexity is complicated, because it depends to a large extent on
the choice of appropriate levels of simplification, which itself depends on number
of points, point density, average curvature, and the performance / detail tradeoff.

The more general issue is that logical agents should behave in robust ways
given naturally limited resources. Finite resources include computational power
and time, and also the data required to solve a problem [39]. It is especially
important with distributed information systems to design solutions that can



answer a user’s questions with the smallest possible bandwidth requirements
and the maximum flexibility in terms of where computation is performed.

8 Multiple Writers and Keyspace Locality

The shepherdable designs presented in this paper have focused on enabling effi-
cient distributed read access to indexes. It is also necessary to enable many writ-
ers to contribute information, which leads to concerns about concurrency and
consistency. Managing decentralized contribution and collaboration in u-forms
is a large topic that is discussed more fully in [23]. Due to space constraints. this
section presents only summary results that are relevant to the index structures
we have discussed.

The simplest way to have many users contributing to a shared index is to
have them all write to a common data structure with a single root node. Un-
fortunately, u-forms in this data structure soon become conflicted, especially if
any of the users are offline. This is compounded by the fact that offline users
usually only have access to parts of the index that they have read from, and so
lack the ability to read another part of the keyspace to decide where in the index
to put a new item. UUIDs that are manufactured by concatenating an agreed
prefix with a semantically meaningful suffix can help users to put new data in
predictable u-forms, but this only compounds the problem that having multiple
writers to the same u-form generates conflicts. The generation of conflicts is not
an insurmountable barrier, but does lead to some difficult design considerations
(see [23]).

One way to solve this problem is to have index writes managed by agents
in specific, reliable venues. Requests for items to be added are made by using
u-forms and shepherds to mediate an asynchronous messaging system [23, §4.1].
Users should keep their proposed additions in a separate index, which can be
flushed when a query to the main shared index demonstrates that their addition
has been successful. This in part reduces the problem of managing decentralized
index changes to the problem of managing large scale centralized indexes, to
which there are known solutions [4]. To distribute load for large indexes, it is
sometimes possible to partition the keyspace into different regions covered by
different indexing services without greatly affecting the balance of the tree as a
whole.

In some cases, the approach of partitioning the index into different parts
of the keyspace works particularly well, because there is close correspondence
between some parts of the keyspace and the activity of certain user groups.
This is particularly likely in geospatial indexes, where users are often focused on
a particular region of interest, that corresponds closely to a particular branch
or branches of the index. (Compare this with an alphabetic B-tree, where it is
unlikely that a user maintains interest in words beginning with a certain string
of letters over a long period of use.) Keyspace locality also enhances querying
both online and offline, which we believe explains the relative reuse benefit of R-
tree searches (Section 6). To gain similar bulk reuse of u-forms for lexical search,



topical datasets have to be carefully designed, which can reduce either the scope
or the performance of general system-wide searches.

9 Rejected Designs

This section gives a brief summary of designs that we prototyped but eventually
rejected because they performed poorly or had undesirable features.

– Single U-Forms. Making a single large “index” u-form whose attributes
correspond to the terms in the index performs poorly for large vocabularies.

– UUID concatenation. One can create a “base UUID” U for the index as
a whole, and find the index entry for a particular term T by manufacturing
the UUID U +T . This performs well for positive searches, but very badly for
out of vocabulary items, because of the ‘manufactured null UUIDs’ problem
(see section 2).

– Quad tree. A spatial index structure that used manufactured UUIDs re-
sulting in similar performance problems was the quad tree (see [32, §6.2]).

– Trie structure. Digital search trees or trie structures [20, Ch 17] proved
to be reasonably effective in our system, though the dependence of query
latency on the length of the query terms lead to relatively poor performance
compared with the B-tree. Also, the natural support of B-trees for range
queries is a benefit for one-dimensional search of continuous data, which is
used by one of our community directory websites (http://goguide.3rc.
org/) for calendar search. A similar design for spatial search (where more
general quad tree bounding boxes kept pointers to those of their children
that were occupied) was similarly more effective than the regular quad tree,
but poor compared with the more balanced R-tree.

10 Conclusion

We have presented a range of shepherdable data structures that support effi-
cient rich-query peer-to-peer search for a variety of interesting applications. We
achieve this flexibility by creating search trees and other data structures out
of basic database objects, relying on the underlying infrastructure for location,
routing and replication. This strategy enables Geobrowser users to repeat pre-
vious searches even if they lose network connectivity.

Applications of this technology are not limited to keyword searches, but can
be used to create a variety of sophisticated user interfaces such as distributed
mapping. At the same time, the careful structuring of information in shepherd-
able indexes can sometimes encourage developers to construct algorithms that
perform more efficiently in a fragile network, by giving results based upon partial
data that may nonetheless be sufficient.

Writing to shepherdable indexes is more complex, because naive implemen-
tations lead to conflicts, which introduces issues not all of which have yet been
solved. To enable reliable decentralized index writes, some combination of service
centralization and index partitioning may be necessary.
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