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Abstract. This paper explores a new technique for encoding structured informa-
tion into a semantic model, for the construction of vector representations of words
and sentences. As an illustrative application, we use this technique to compose
robust representations of words based on sequences of letters, that are tolerant to
changes such as transposition, insertion and deletion of characters. Since these
vectors are generated from the written form or orthography of a word, we call
them ‘orthographic vectors’. The representation of discrete letters in a continu-
ous vector space is an interesting example of a Generalized Quantum model, and
the process of generating semantic vectors for letters in a word is mathematically
similar to the derivation of orbital angular momentum in quantum mechanics.
The importance (and sometimes, the violation) of orthogonality is discussed in
both mathematical settings.This work is grounded in psychological literature on
word representation and recognition, and is also motivated by potential techno-
logical applications such as genre-appropriate spelling correction. The mathemat-
ical method, examples and experiments, and the implementation and availability
of the technique in the Semantic Vectors package are also discussed.
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1 Introduction

The relationships between words, their representation in text, concepts in the mind, and
objects in the real world, has been the source of inquiry over many centuries. Empirical,
distributional paradigms have been shown to successfully derive human-like estimates
of semantic distance from large text corpora, and recent developments in this area have
mediated the enrichment of distributional models with structural information, such as
the relative position of terms [1, 2], and orthographic information describing the config-
uration of characters from which words are composed [3, 4]. This paper extends these
beginnings in three principal ways. First, we propose a new and very simple method
for encoding structure into semantic vectors, using a quantization of the space between
two extreme ‘demarcator vectors’. This vector generation method performs well in ex-
periments and has some key computational advantages. Second, the method is general
enough to be applied within a wide range of Vector Symbolic Architectures (VSAs),



including Circular Holographic Reduced Representations (CHHRs) that use complex
vectors [5]. Thirdly, we investigate some higher-level compositions as well, demon-
strating some early results with compositional representations for sentences.

Each of these developments is related to quantum interaction as follows. Demarca-
tor vector generation is similar in a sense to the derivation of orbital angular momentum
values in quantum mechanics, in that they use the same mathematics. The application
within many VSAs, including those over complex vector space, makes the new meth-
ods available within algebras that are particularly related to generalized quantum mod-
els. Finally, compositional methods are important in research on generalized quantum
structures, and the way many levels of representation are combined seamlessly in the
compositional models presented here should be of interest to researchers in the field.

2 Orthogonality in Distributional and Orthographic Models

Geometric methods of distributional semantics derive vector representations of terms
from electronic text, such that terms that occur in similar contexts will have similar
vectors [6, 7]. While such models have been shown to approximate human performance
on a number of cognitive tasks [8, 9], they generally do not take into account structural
elements of language, and as consequently have been referred to, at times critically, as
“bags of words” models. Emerging approaches to semantic space models have lever-
aged reversible vector transformations to encode additional layers of meaning into vec-
tor representations of terms and concepts. Examples include the encoding of the relative
position of terms [1, 10], syntactic information [11], and orthographic information [4].

The general approach used depends upon the generation of vector representations
for terms, and associating reversible vector transformations with properties of interest.
In accordance with terminology developed in [12], we will refer to the vector represen-
tations of atomic components such as terms as elemental vectors. Elemental vectors are
constructed using a randomization procedure such that they have a high probability of
being mutually orthogonal, or close-to-orthogonal. This adds robustness to the model,
by making it highly improbable that elemental vectors would be confused with one an-
other, despite the distortion that occurs during training. However, it also introduces the
implicit assumption that elemental vectors are unrelated to one another, which means
that models generated in this way must be composed of discrete elements.

This limitation notwithstanding, this approach has allowed for the integration of
structured information into distributional models of meaning. From the perspective of
cognitive psychology, this is desirable as it presents the possibility of a unified term
representation that can account for a broad range of experimental phenomena. Recent
work in this area has leveraged circular convolution to generate vectors representing the
orthographic form of words [3], and integrate these with a geometric model of distribu-
tional semantics [4]. Vector representations of orthographic word form are generated by
using circular convolution to generate bound products representing the component bi-
grams of the term concerned, including non-contiguous bigrams. Karchergis et al give
the following example (~ indicates binding using circular convolution) [4]:



word =w + o+ r + d+ w ~ o+ o~ r + r ~ d

+w ~ o+ (w ~ )~ r + (w ~ )~ d+ (w ~ o)~ r + ((w ~ )~ r)~ d

+(w ~ )~ d+ (o~ )~ d+ r ~ d+ ((w ~ o) )~ d+ (o~ r)~ d

The vector representation for the term “word” is generated by combining a set of vec-
tors representing unigrams, bigrams, and trigrams of characters. It is a characteristic of
the model employed that each of these vectors have a high probability of being mutu-
ally orthogonal, or close-to-orthogonal. So, for example, the vectors representing the
trigrams ((w ~ ) ~ r) and ((w ~ o) ~ r) will be dissimilar from one another. Con-
sequently it is necessary to explicitly encode all of the n-grams of interest, including
gapped trigrams (such as “w r”) to provide flexibility. From the perspective of compu-
tational complexity, this is less than ideal, as the number of representational units that
must be generated and encoded is at least quadratic to the length of the sequence.

Rather than explicitly encoding character position precisely (with respect to some
other character, or the term itself), alternative models of orthographic representation
allow for a degree of uncertainty with respect to letter position. These approaches mea-
sure the relatedness between terms on the basis of the similarity between probability
distributions assigned to the positions of each matching character [13, 14], providing
a more flexible measure of similarity. However, on account of the constraints we have
discussed, only orthographic representations based on discrete bigrams or the exact
position of characters have been combined with other sorts of distributional informa-
tion in an attempt to generate a holistic representation to date [3, 15]. Imposing near-
orthogonality adds robustness, but also necessitates ignoring potentially useful infor-
mation to do with structure, namely the proximity between character positions within
a word. Consequently, we have selected the generation of orthographic representations
as an example application through which to illustrate the utility of our approach.

The paper proceeds as follows. First, we present the mathematical language we will
use to describe the operators provided by VSAs, a family of representational approaches
based on reversible vector transformations [16]. Next, we will describe an approach
we have developed through which the distance between elemental vectors, and hence
bound products, can be predetermined. In the context of an illustrative application for
orthographic modeling, we show that this approach permits the encoding of structural
information to do with proximity, rather than absolute position, into a distributional
model. We then discuss a relationship between this approach and quantum mechanics,
and conclude with some experimental results and example applications.

3 Mathematical Structure and Methods

3.1 Vector Symbolic Architectures (VSAs)

The reversible vector transformations we have discussed are a distinguishing feature
of a family of representational approaches collectively known as VSAs [16]. In our
experiments the VSAs we will use are Kanerva’s Binary Spatter Code (BSC), which



uses binary vectors [17], and Plate’s CHRR [5], which uses complex vectors where each
dimension represents an angle between −π and π, using the implementation developed
in [10]. In addition, we will use an approach based on permutation of real vectors [2].

Binding is the primary operation facilitated by VSAs (in addition to standard oper-
ators for vector superposition and vector comparison). Binding is a multiplication-like
operator through which two vectors are combined to form a third vector C that is dis-
similar from either of its component vectors A and B. We will use the symbol “⊗” for
binding, and the symbol “�” for the inverse of binding for the remainder of this paper.
It is important that this operator be invertible: if C = A ⊗ B, then A � C = A � (A ⊗
B) = B. In some models, this recovery may be approximate, but the robust nature of the
representation guarantees that A � C is similar enough to B that B can easily be recog-
nized as the best candidate for A� C in the original set of concepts. Thus the invertible
nature of the bind operator facilitates the retrieval of the information it encodes.

In the case of the BSC, elemental vectors are initialized by randomly assigning 0 or
1 to each dimension with equal probability. Pairwise exclusive or (XOR) is used as a
binding operator: X⊗Y = X XOR Y. As it is its own inverse, the binding and decoding
processes are identical (⊗=�). For superposition, the BSC employs a majority vote: if
the component vectors of the bundle have more ones than zeros in a dimension, this
dimension will have a value of one, with ties broken at random.

In CHRR, binding through circular convolution is accomplished by pairwise mul-
tiplication: X ⊗ Y = {X1Y1, X2Y2, .....Xn−1Yn−1, XnYn}, which is equivalent to
addition of the phase angles of the circular vectors concerned. Binding is inverted by
binding to the inverse of the vector concerned: X � Y = X ⊗ Y −1, where the inverse
of a vector is its complex conjugate. Elemental vectors are initialized by randomly as-
signing a phase angle to each dimension. Superposition is accomplished by pairwise
addition of the unit circle vectors, and normalization of the result for each circular
component. In the implementation used in our experiments, normalization occurs after
training concludes, so the sequence in which superposition occurs is not relevant.

Our real vector implementation follows the approach developed by Sahlgren and
his colleagues [2], and differs from the binary and complex implementations, in that
elemental vectors are “bound” to permutations, rather than to other vectors. Elemental
vectors are constructed by creating a high-dimensional zero vector (on the order of 1000
dimensions), and setting a small number of the dimensions of this vector (on the order
of 10) to either +1 or -1 at random. The permutations utilized consist of shifting all of
the elements of a given vector n positions to the right, where each value n is assigned to,
or derived from, the information it is intended to encode. In the case of our orthographic
model, this information consists of the character occurring in a particular position, so
we have used the ASCII value of the character concerned as n. Binding is reversed
by permuting all of the elements of the vector n positions to the left. Superposition is
accomplished by adding the vectors concerned, and normalizing the result.

In all models, the “random” initiation of elemental vectors is rendered deterministic
by seeding the random number generator with a hash value derived from a string or
character of interest following the approach developed in [18]. This retains the prop-
erty of near-orthogonality where desired, while ensuring that random overlap between
elemental vectors is consist across experiments.
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Fig. 1. Interpolation to Generate Five Demarcator Vectors. P(1) = probability of 1.

3.2 Measured Similarity

The first step in our approach involves generating a set of vectors that are a fixed dis-
tance apart, which we will refer to as demarcator vectors (D(position)), as illustrated
in Figure 1. The first pair of demarcator vectors are conventional elemental vectors
D(α) and D(ω), constructed randomly such that they have a high probability of being
mutually orthogonal or close-to-orthogonal. To ensure this with certainty, we render
D(ω) orthogonal to D(α) using the quantum negation procedure, or its binary approx-
imation, described in [19] and [20] respectively. The remaining demarcator vectors are
generated by interpolation. In the continuous vector spaces, this is accomplished by
subdividing the 90o angle between D(α) and D(ω) and generating the corresponding
unit vectors. In binary vector space, this is accomplished by weighting the probability
of assigning a 1 when D(α) and D(ω) disagree in accordance with the desired distance
between the new demarcator vector and each of these extremes4. As the vectors repre-
senting adjacent numbers are approximately equidistant, the distances between vectors
pairs representing numbers the same distance apart should also be approximately equal
(e.g. sim(D(1),D(3)) ≈ sim(D(2), D(4)).

Table 1 illustrates the pairwise similarities between a set of five demarcator vectors
constructed in this manner. In the binary case vectors of dimensionality 32,000 are used,
in the complex case vectors of dimensionality 500 are used, and in the real case, vectors
of dimensionality 1,000 are used. In both cases, the relatedness between demarcator
vectors a fixed distance apart is approximately equal. For example, the similarity be-
tween all pairs of demarcator vectors two positions apart (e.g. 1 and 3) is approximately
0.5 in the binary implementation, and 0.71 in the complex and real vector implementa-
tions. In the binary implementation, the difference in relatedness is proportional to the
difference in demarcator position. This is not the case in the complex or real implemen-
tations, where the drop in similarity between demarcator vectors becomes progressively
steeper. This is an artifact of the metric used to measure similarity in each case. With
binary vectors, 2× (0.5− normalized Hamming distance) is used, but with continu-
ous vectors the cosine distance metric is used. While a proportional decrement could be

4 The same random number sequence must be used for all vectors in a demarcator set, so that a
consistent random value for each bit position is compared to the relevant thresholds.



Table 1. Pairwise Similarity between Demarcator Vectors

BINARY COMPLEX REAL

α 1 2 3 ω α 1 2 3 ω α 1 2 3 ω

α 1.00 0.75 0.49 0.25 0.00 α 1.00 0.92 0.71 0.38 0.00 α 1.00 0.92 0.71 0.38 0.00

1 0.75 1.00 0.74 0.50 0.25 1 0.92 1.00 0.92 0.71 0.38 1 0.92 1.00 0.92 0.71 0.38

2 0.49 0.74 1.00 0.75 0.51 2 0.71 0.92 1.00 0.92 0.71 2 0.71 0.92 1.00 0.92 0.71

3 0.25 0.50 0.75 1.00 0.75 3 0.38 0.71 0.92 1.00 0.92 3 0.38 0.71 0.92 1.00 0.92

ω 0.00 0.25 0.51 0.75 1.00 ω 0.00 0.38 0.71 0.92 1.00 ω 0.00 0.38 0.71 0.92 1.00

obtained by measuring the angle between complex vectors directly (or taking the arccos
of this cosine value), we will retain the use of the cosine metric for our experiments.

3.3 Encoding Orthography

Using controlled degrees of non-orthogonality, we can encode information about the
positions of letters in words into their vector representations. Like spatial encoding
[14] and the overlap model [13], our approach is based upon measuring the difference
in position between matching characters. This is accomplished by creating elemental
vectors for characters, and binding them to demarcator vectors representing positions.
For example, the orthographic vector for the term “word” is constructed as follows:

S(word)+= E(w)⊗D(1) + E(o)⊗D(2) + E(r)⊗D(3) + E(d)⊗D(4)

As the vectors for characters are mutually orthogonal or near-orthogonal, bound prod-
ucts derived from different characters will be orthogonal or near-orthogonal also. For
example, in the complex vector space used to generate Table 1, sim(E(w)⊗D(1), E(q)⊗
D(1)) = 0. Furthermore, the distance between bound products containing the same
character will approximate the distance between their demarcator vectors. For example,
in the real vector space used to generate Table 1, sim(E(w)⊗D(1), E(w)⊗D(2)) =
0.92 = sim(D(1), D(2)). Ultimately, the similarity between a pair of terms is derived
from the distance between their matching characters. If this distance is generally low,
the orthographic similarity between these terms will be high5. Thus, the models so gen-
erated are innately tolerant to variations such as transposition, insertion and deletion of
sequence elements.

5 For terms of different lengths, we elected to construct a set of demarcator vectors for each
term. So while D(α) and D(ω) will be identical, the demarcator for a particular position may
differ. It would also be possible to use identical demarcator vectors (by generating a set large
enough to accommodate the longest term), which may be advantageous for some tasks.
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Fig. 2. Orbital angular momentum vectors, as derived from quantized states along a given axis
(left), and a related strategy for encoding positions as vectors

4 Demarcator Vectors and Orbital Angular Momentum

Evenly distributing normalized vectors between two orthogonal vectors is one of many
strategies we could adopt to generate demarcator vectors. To generalize this process,
we can describe it as follows:

1. Construct a line in the vector space with a given starting point and direction.
2. Place demarcators along this line using some dividing strategy.
3. (Optional) Project demarcator vectors onto the unit circle to normalize them.

Two examples of this strategy are illustrated in Figure 2. In the example on the left,
the generating line is the vertical axis, the dividing strategy is to mark points at even
intervals along this axis, and the projection strategy is to project orthogonally from the
vertical axis onto the unit sphere6. In the example on the right, we have chosen a gen-
erating line parallel to the vertical axis, marked points at even intervals, and projected
onto the unit sphere using standard vector normalization. The left-hand strategy will be
familiar to some readers: this is precisely the way orbital angular momentum states are
generated in quantum mechanics. We refer the reader to a text on quantum mechanics
for this derivation, e.g., [21, Ch 14]: the process includes solving a wave equation in
three dimensions, exploring the angular momentum operator and the commutator rela-
tions between its components, and noting that each point on the axis can be mapped to
many on the outer sphere (this ambiguity corresponding to the fact that measuring the
component of angular momentum along one axis must leave the component along the
other axes undetermined according to the Uncertainy Principle). The important point
for this discussion is that it is quite standard to derive non-orthogonal vectors for states

6 In this example we have drawn negative and positive positions, though in practice we have
only experimented with nonnegative positions so far.



in this fashion, not only in generalized quantum structures but in quantum mechan-
ics itself. The underlying spherical harmonic functions involved in angular momentum
are orthogonal to one another under pairwise integration, but lead to several possible
non-orthogonal angular momentum vectors.

The ambiguity of the projection onto the unit sphere in the angular momentum
model in more than two dimensions is problematic, and we expect the strategy on the
right to be simpler in practice. Note also that both strategies do not distribute vectors
evenly around the unit sphere: for example, in the right-hand strategy, the vectors repre-
senting positions 3 and 4 are closer to each other than the vectors representing positions
1 and 2. Such flexibility to vary these pairwise similarities between positions along a
string is a desirable property, because changes at the beginning of a word may be more
significant than changes in the middle [13]. We note also that in our current imple-
mentation in the Semantic Vectors package, this generalized strategy works well for
real-valued and complex-valued vectors, but is as yet underspecified for binary-valued
vectors because (for example) ‘the point half-way betweenA andB’ is multiply defined
using Hamming distance [22]. We are currently investigating appropriate strategies to
bring binary vectors into this generalized description.

5 Applications: Orthography, Morphology, Sentence Similarity

Table 2 provides examples of nearest-neighbor search based on orthographic similar-
ity in real, complex and binary vector spaces derived from the widely-used Touchstone
Applied Science Associates, Inc. (TASA) corpus. Terms in the corpus that occurred be-
tween 5 and 15,000 times were represented as candidates for retrieval. The dimension-
ality of the real, complex and binary vector spaces concerned was 1000, 500 and 32,000
respectively. These dimensions were chosen so as to normalize the space requirements
of the stored vectors across models, and were retained in our subsequent experiments.
Our approach successfully recovers orthographically related terms, including terms
containing substrings of the original term (“dominic” vs. “condominium”); insertions
(“orthography” vs. “orthophotography”); substitutions (“angular” vs. “annular”)
and transposition of characters ( “wahle” vs. “whale”).

While we would be hesitant to propose the simple model of orthographic repre-
sentation we have developed as a cognitive model of lexical coding, it is interesting to

Table 2. Orthographic Similarity

REAL COMPLEX BINARY

CUE dominic CUE orthography CUE orthogonality CUE angular CUE wahle

0.92 dominican 0.92 orthophotography 0.86 orthogonally 0.73 agranular 0.94 whale
0.89 dominion 0.93 photography 0.85 orthogonal 0.70 annular 0.61 awhile
0.88 demonic 0.91 chromatography 0.84 orthodontia 0.67 angularly 0.60 while
0.85 dominions 0.90 orthographic 0.82 ornithology 0.66 gabular 0.60 whales
0.85 condominium 0.90 choreography 0.82 ornithologist 0.66 inaugural 0.60 whaley



Table 3. Comparison with benchmark conditions from [15]. 1X = original dimensionality (used
for Table 2). 2X = twice original dimensionality. nb = no binding. ED = 1− edit distance

combined length
.

BINARY COMPLEX REAL

1X 2X 2Xnb 1X 2X 2Xnb 1X 2X ED
Stability X X X X X X X X X
Edge Effects X
Local TL X X X X X X X X X
Global TL X
Distal TL
Compound TL X X X X X X
Distinct RP X X X X X X X X X
Repeated RP X X X X X X X X

note that it does conform to the majority of a set of constraints abstracted from lexical
priming data by Hannagan and his colleagues [15]. We will describe these constraints
in brief here, but refer the interested reader to [15] for further details. The constraints
are as follows: (1) Stability: a string should be most similar to itself (sim >= 0.95); (2)
Edge Effects: substitutions at the edges of strings should be more disruptive; (3) Local
Translocations (TL): transposing adjacent characters should be less disruptive than
substituting both of them; (4) Global TL: transposing all adjacent characters should
be maximally disruptive (5) Distal TL: transposing non-adjacent characters should be
more disruptive than substituting one, but less than substituting both; (6) Compound
TL: TL and substitution should be more disruptive than substitution alone; (7) Distinct
Relative Position (RP): removing some characters should preserve some similarity;
and (8) Repeated RP: removing a repeated or non-repeated letter should be equally
disruptive7. Each constraint is accompanied by a set of test cases, consisting of paired
strings, and the degree to which a model meets the constraint is determined from the
estimated similarities between these pairs, and the relationships between them.

The extent to which the our models meet these constraints is shown in Table 3. Es-
timates based on all models consistently meet all constraints aside from those related
to Edge Effects, and the Global and Distal TL constraints (in the latter case this is due
to the fact that translocation of characters one position apart is less disruptive than sub-
stituting one of these characters). This represents a better fit to these constraints than
comparable models based on letter distribution only (labeled “nb”, or not bound). It also
represents a better fit than the majority of approaches evaluated against this benchmark
previously[15, 23], providing motivation for the further evaluation of a more developed
model in the future. While the real model appeared to meet the edge effect related con-
straint at its original dimensionality, this finding did not hold at higher dimensionality,
and was most likely produced by random overlap. This is not surprising given that our

7 As the randomization procedure makes it very unlikely that the estimates of similarity between
any two pairs will be identical, we have considered a difference of <= 0.05 to be approxi-
mately equal. This mirrors the relaxed constraint that>= 0.95 is approximately identical used
by Hannagan and his colleagues for the stability constraint.



Table 4. Combining Orthographic and Semantic Similarity

REAL COMPLEX BINARY

CUE t
¯
hink CUE bring CUE eat CUE catch CUE write

0.57 intend 0.68 bringing 0.44 eats 0.191 catching 0.180 writes
0.56 know 0.62 brings 0.43 ate 0.184 caught 0.173 writer
0.51 thinks 0.53 brought 0.39 meat 0.181 catches 0.172 rewritten
0.51 thinking 0.52 ring 0.36 eaten 0.176 watch 0.172 wrote
0.51 want 0.51 burning 0.36 restate 0.176 teach 0.171 reread

current model does not address edge effects. As suggested earlier, one way to address
this issue would be to increase the distance between peripheral demarcator vectors, a
customization we plan to evaluate in future work.

The results in Table 4 were obtained by superposing the orthographic vector for each
term from the TASA corpus with a semantic vector for the same term generated using
the permutation-based approach described in [2], with a 2+2 sliding window. As antic-
ipated by previous work combining orthographic and semantic relatedness [24, 25], the
examples suggest that this model is able to find associations between morphologically
related terms, including those between English verb roots and past tense forms are re-
lated by non-affixal patterns such as “bring:brought”. The combination of semantics
and orthography is evident in other examples, such as “think:intend”. However, this
sensitivity to morphological similarity comes at a cost of introducing false similarity
when common letter patterns do not have a semantic significance.

Table 5. Retrieval of Sentences from the TASA Corpus in complex (first two examples) and
binary (second two examples) spaces

CUE the greater the force of the air the louder the sounds

0.86 that is the smaller the wavelength the greater the energy of the radiation
0.86 the greater the amplitude the greater the amount of energy in the wave
0.85 the deeper the level of processing the stronger the trace and the better the memory
0.84 the darker the blue the deeper the water

CUE these four quantum numbers are used in describing electron behavior

0.353 these numbers are important in chemistry
0.3433 these are usually used in the home
0.316 what punctuation marks are used in these four sentences
0.315 these are abbreviations that sometimes are used in written directions

Table 5 illustrates the application of the same approach at a different level of granural-
ity to facilitate the retrieval of similar sentences. The set of superposed semantic and
orthographic vectors used to generate Table 4, as well as randomly generated elemental
vectors for high frequency terms that were not represented in this set, were combined



with sets of demarcator vectors derived from different D(α) and D(ω) vectors than
those used at the character level. This allows for the encoding of phrases and sentences.
For example, the phrase “these numbers” would be encoded as: S(these) ⊗ D(1) +
S(numbers)⊗D(2). When applied to sentences from the TASA corpus, this facilitates
the retrieval of sentences describing entities related to one another in similar ways to
those in the cue sentence, a facility that has proved useful for the automated extraction
of propositional information from narrative text [26].

6 Conclusion

In this paper we have introduced a novel approach through which the near-orthogonality
of elemental vectors is deliberately violated to introduce measured similarity into se-
mantic space. While illustrated primarily through orthographic modeling, the approach
is general in nature and can be applied in any situation in which a representation of se-
quence that is tolerant to variation is desired. Furthermore, this approach may mediate
the generation of holistic representations combining distributional and spatial informa-
tion, a direction we plan to explore in future work. To facilitate further experimentation,
our real, binary and complex orthographic vector implementations have been released
as components of the open source Semantic Vectors package [27, 28].
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