
Managing Distributed Collaboration in a
Peer-to-Peer Network

Michael Higgins, Stuart Roth, Jeff Senn, Peter Lucas, Dominic Widdows
{higgins,roth,senn,lucas,widdows}@maya.com

MAYA Design Inc.??

14th International Conference on Cooperative Information Systems
(CoopIS 2006), Montpellier, France, Nov 20061

Abstract. Shared mutable information objects called u-forms provide
an attractive foundation on which to build collaborative systems. As we
scale up such systems from small fully-connected workgroups to large,
highly distributed, and partially disconnected groups, we have found
that peer-to-peer technology and optimistic replication strategies provide
a cost-effective mechanism for maintaining good performance. Unfortu-
nately, such systems present well-known coordination and consistency
problems. This paper discusses strategies for addressing those difficulties
at different levels of the system design, focusing on providing solutions
in the information architecture rather than at the infrastructure layer.
Addressing problems at this higher layer allows greater freedom in de-
sign, and simplifies moving from one infrastructural base to another as
technology evolves. Our primary strategy is to enable robust decentral-
ized and asynchronous collaboration while designing architectures that
do not rely on two users writing to the same u-form at the same time in
different venues. Techniques are provided for simple messaging, collab-
orative maintenance of collections, indexing supporting rich query, and
stand-off annotation and elaboration of third-party datasets. We outline
the application of these techniques in a working collaborative system.

1 Introduction

This paper describes a variety of structures that enable robust peer-to-peer col-
laboration on many semantic levels. The strategy we pursue is to create infor-
mation architectures that allow widespread replication but minimize the danger
of conflicted data. This pattern pervades many of our techniques, from a simple
asynchronous messaging protocol to the ability of many publishers to contribute
content about the same phenomena.

For some time, MAYA Design and our collaborators have been building pow-
erful collaborative applications by allowing users to share and modify mutable

?? This work was supported by Defense Advanced Research Projects Agency grant
SB031-008 for the Cluster-Based Repositories and Analysis project.

1 c© Springer-Verlag

information objects called u-forms [1]. This sort of “shared memory” approach
to managing collaboration is both elegant and powerful. As the breadth and
reach of our systems has expanded, we have encountered a variety of challenges,
both obvious and subtle. In brief:

– Systems with many users generate large amounts of storage and retrieval
cost.

– Systems with many users are rarely completely connected. Users are mobile:
they come and go, and need information even when they have little or no
network connectivity.

– Systems with many users generate large amounts of disagreement. These
disagreements range from mismatches between versions of specific informa-
tion objects to high-level differences of opinion on certain topics. Many such
disagreements cannot and should not be resolved automatically.

We have found optimistic peer-to-peer replication to be a useful tool for
attacking the first and second problems. Such a replication model permits a
very scalable infrastructure, does not require a major datacenter investment, and
tolerates disconnected and poorly connected users [2]. The difficulty of managing
an optimistically replicated system is well-understood; it was most famously
articulated in [3].

However, this model does nothing to address the third problem, and, if any-
thing, exacerbates it by allowing concurrent and inconsistent updates to the
system. Book-keeping to detect such concurrency problems can become signif-
icant, and the management of trust and security in the system is complicated.
While good work has been done on managing and automatically resolving con-
flicts (see e.g., [4]), those who have worked hardest on this topic acknowledge
how difficult it is to provide automatic conflict resolution in general, because the
semantics of conflict resolution criteria are always heavily application dependent,
and may depend on several replicated objects, not just one.

Our experiences building working applications and a shared Information
Commons [5] collaborative space on top of a particular replication system (called
Shepherds) has led us to evolve techniques to minimize and in some cases avoid
these difficulties. Instead of trying to create rules for resolving all conflicts, we
have taken a quite different approach, relying on careful information architecture
to enable direct collaboration while minimizing the danger that two users will
concurrently update the same replicated u-form.

It is our belief that the assumptions that our system depends upon are weak
enough that our strategies will be applicable to other systems. There are many
exciting recent developments in peer-to-peer systems that could support such
collaboration strategies. Important systems include Chord [6], Pastry [7], and
OceanStore [8]. Chord and Pastry supply only lookup and routing technology;
OceanStore is a more complete system providing replication and object storage.
Other higher-level systems include CFS (built on Chord) [9] and PAST (built
on Pastry) [10]. Several of these systems use cryptographic hashes to identify
immutable data as do we.

2

This paper describes the Shepherds system, the relevant engineering and de-
sign assumptions, and some interesting applications and collaborative structures.
The paper is organized as follows. Section 2 discusses u-forms and the collabo-
ration model they enable, as well as a brief survey of systems we have developed
using this model. Section 3 discusses engineering and design issues, including
the particular choices and assumptions that our system makes, and the costs
and trade-offs entailed. This discussion includes details about conflict detection,
shepherdable indexes, trust management and digital signatures, and some infor-
mation about our underlying replication and storage infrastructure, elaborating
on the problem areas raised in this introduction. Section 4 describes how we layer
higher level data structures upon this foundation to support messaging, shared
maintenance of information collections, and collaborative publication and an-
notation, without running afoul of the pitfalls above. In addition, by layering
our solutions at a higher level of the system, we give ourselves the freedom
to more readily change infrastructure technologies. Finally, Section 5 ties these
techniques together by briefly describing a distributed collaborative geographic
information system that makes use of every layer of the system.

We conclude with a fundamental observation: optimistic replication systems
scale well and provide a wonderful opportunity for very large-scale collaboration.
But the guarantees provided by such systems are necessarily weak. Instead of
trying to ensure that conflicting updates to the same u-form are resolved be-
fore users notice, we try to create information architectures that minimize the
possibility of such conflicts occuring in the first place — while still empower-
ing users to collaborate in real time and to make contributions about definitive
data. Clever layering in the design and engineering of the system allow us to
support very powerful applications without burdening the entire system with
the maintenance of low-level guarantees.

2 U-forms and the Visage Collaboration Model

All well-designed replication and collaboration systems depend on a fundamental
unit of storage and replication, such as a file, a data table, or an individual
data record. In Visage [11] and all its descendents, including our Shepherds
system, this unit is called a u-form [12, 1]. A u-form is an extensible bundle of
attribute-value pairs identified by a universally unique identifier or UUID. U-
forms are mutable (though sometimes changes to a u-form can be recognized as
evidence of unauthorized tampering and rejected, as discussed in section 3.3).
Attribute names are unique within a u-form. Attribute values can be any data:
lists, dictionaries, binary blobs, and, of course, UUIDs of other u-forms. A UUID
appearing as the value of an attribute is called a relation2 from one u-form to
another (sometimes thought of as a pointer or a reference). The ability to store
2 This use of the word “relation” carries the traditional philosophical meaning of

a relation between two objects (c.f. Aristotle, Categories Ch. 7) rather than the
mathematical meaning of a relation between two sets, the meaning used in relational
database systems. These uses are closely related: a relation between sets can be

3

a UUID as a value in a u-form is important: it allows us to construct complex
structures of u-forms by reference. A simple example might be a u-form whose
members attribute is a list of UUIDs. Such a u-form is called a collection. We
will see more sophisticated examples exploiting u-form relations throughout the
paper.

The name u-form is an homage to Michael Dertouzos’ e-form [13]. UUIDs
are used quite commonly in many areas of computer science, particularly dis-
tributed systems. One contemporary reference relating UUIDs and the Web’s
URN system is [14]. A good overview of u-forms is found in [1]. A formal re-
semblance exists between the (UUID, attribute, value) triple in the u-form, the
(URI, predicate, object) triple of RDF [15]. The u-form is an abstract datatype,
and u-forms can be serialized using many formats including XML, though our
implementations commonly use a recursive bytecode format called the Visage
Standard Message Format, which is considerably more efficient than XML in
practice.

Although u-forms per se are completely schemaless, schemata can be lay-
ered on top of the basic u-forms by including relations to special role u-forms
[16].3 Roles are u-forms that reserve the use of particular attributes and explain
their intended interpretation. Storing relations to roles inside u-forms helps in
making u-forms self-describing and introspective, which contributes to the ef-
fectiveness of replication and enables a single u-form to be a useful member of
many heterogeneous datasets.

Updates to u-forms are simply changes to the attribute-value set. Changes to
a single u-form can be made atomically in the local venue. The entire state of a u-
form is replicated when replication occurs. Because users may be disconnected for
a long period, we replicate only the state of a u-form, not a log of all operations
on that u-form (which could be quite large).

U-forms support collaboration because they are mutable but have universal
identity, so the underlying replication system allows a user to “subscribe to” a
u-form: any changes are then propagated to that user. In this way multiple users
can be interested in a shared set of u-forms. As they modify this shared set,
the u-forms act as a common collaborative space and all the interested parties
observe the evolution of that space.

2.1 A Brief History of the U-form Style

It is useful at this point to give a quick overview of some of the systems we have
built over the years using u-forms. This demonstrates the utility of a simple,
sound foundation, and will give us a set of concrete touchstones to refer to
during the development of some of the more abstract ideas later in the paper.

thought of as a subset of a Cartesian product, while a relation between objects is an
element of a Cartesian product.

3 This use of a single syntax to describe both data and metadata is reminiscent of
XML Schema’s use of XML as its definition language. See [17].

4

~fd000fbc6d16

Jack Smith

InTech

~fd000fbc2f0a

~fd000fbc2ec0

~fd000fbc2f06

Sparky

golf, antiques

Aspinwall

~fd000fbc0e88

~fd000fbc4d7d

~fd000fbc2f0a

Lisa Ryan

Arc Systems

~fd000fbc6d16

~fd000fbc2ec0

~fd000fbc2f06

Sparky

cello, golf

Aspinwall

~fd000fbc0e88

~fd000fbc4d7d

Fig. 1. U-forms and several related aspects of the system, including attributes, values,
relations between u-forms, roles, and the VIA repository.

Visage and Visage2 We first used this collaborative style in an information
visualization system called Visage (see [11] and [18]), so we have come to think
of it as the “Visage collaboration model.” Visage pioneered an interaction model
called information-centricity; the idea was to simultaneously provide:

– An easy-to-use direct-manipulation user interface.
– Fine-grained access to small units of information (scraps of text and rows of

tables, not just whole documents).
– Data strongly separated from presentation to encourage multiple visualiza-

tions of the same data.
– Easy collaboration despite the fact that different users might prefer very

different visualizations of the same data.

This last feature was added for Visage2, and cemented the definition of u-
form that we use today. In particular, the fact that we use UUIDs to identify
data objects (rather than locally scoped primary keys or location-specific URLs)
enabled us to envision much more flexible collaboration scenarios [19]. Our com-
mitment to the information visualization application domain made it critical
that collaboration was mediated through changes to the data space, not simple
sharing of the user interface (see Figure 2 and further discussion in [20]).

Visage2’s implementation depended upon client-server technology, not peer-
to-peer technology. Therefore replication was limited and controlled. It is the
increase in scale, and corresponding relaxation of our controls on replication,
that has led to much of the present work.

5

Fig. 2. Polymorphic visualization of a u-form.

CoMotion Success in the laboratory and in limited deployments of the Visage
system encouraged us to commercialize the technology. In 1998 we spun off a
company called MAYA Viz to develop a commercial product. The framework
they created is called CoMotion. Products built on top of CoMotion are used by
the U.S. Military for command, control, and logistics applications [21]. CoMotion
applications are also used in the medical and energy industries. MAYA Viz was
acquired by General Dynamics in 2005 and is now GD Viz [22].

The Geobrowser Meanwhile, we continued our research and became interested
in very large scale, loosely coupled systems. This pushed us toward peer-to-peer
replication as a scheme that can scale much better than client-server systems.

The Geobrowser [23] began as a collaborative GIS system built on our Shep-
herds peer-to-peer system, but has been evolving toward a more general in-
formation browsing and publishing system. The Geobrowser is discussed more
thoroughly in Section 5.

The Community Directory and Buskarma U-forms are not limited to use
in exotic information management domains. We have built a variety of useful
web applications on top of the Shepherds architecture. These include the Com-
munity Directory family of websites [24, 25], winners of the Exemplary Systems
in Government Award from URISA, an international organization of government
information professionals. Another application is Buskarma, a public transporta-
tion website for the Pittsburgh area [26]. The underlying peer-to-peer nature of
these sites is not very visible, since websites require a stable server to function,
but the webservers themselves are connected through the Shepherds system to

6

the same shared information space that the Geobrowser uses. This information
space is called the Information Commons [5].

2.2 Some General Observations about U-form Usages

U-forms are the unit of information in our system, but this same unit is often
exploited for a variety of purposes, including:

– Conceptual units, in 1-1 correspondence with objects in the world. This
perspective is about semantics and the world.

– Collaborational units (e.g., data that users share and update). This perspec-
tive is about interaction design.

– Trust units, for digital signatures and encryption. This perspective is about
social cooperation and trust.

– Basic data storage and transport units. This perspective is about engineering
and system efficiency.

Each of these perspectives will be important as we explore collaboration
techniques, and there are often trade-offs among them. For example, computing
digital signatures imposes a non-trivial computational cost per u-form, so there
are sometimes pressures to put lots of related data from the same publisher
into a single u-form. On the other hand, an index to a dataset is often a single
conceptual unit, but for effective use of resources, and to serve the purposes of a
variety of users with different interests, this conceptual unit needs to be broken
up across several related u-forms.

3 Design and Engineering Issues and Background

This section gives an overview of three basic computer science areas that are
necessary ingredients for our collaboration architectures. These are the shep-
herds (replications agents) themselves, shepherdable indexes, and digital secu-
rity issues. We do not intend to provide a detailed description of all aspects
of the engineering of the Shepherds system. It would be beyond the scope of
this paper, and would distract from the general applicability of the techniques
described later. For more information about the Shepherds system, consult [?].
It is nonetheless important to give some sketch of how the Shepherds system
works, in order to make clear the kinds of guarantees we require from the low
level portions of the system.

One major theme of this section is that while our system allows u-forms to
be updated anywhere in principle, in practice this is problematic for a variety
of reasons. The techniques described later in the paper will show how we can
perform collaboration while attempting to minimize the number of venues in
which a given u-form is updated.

7

3.1 Shepherd Agents, Version Vectors, and Conflict Recognition

Shepherds is a large-scale peer-to-peer system that uses optimistic replication
to facilitate collaboration through shared u-forms. Let us quickly examine some
facets of the system.

The system contains a potentially very large number of venues. There is an
extremely large number of u-forms; no venue is likely to contain a significant
fraction of all u-forms. U-forms can be created at will by any user in any venue.
U-forms can, in general, be updated in any venue (but we will discuss practical
restrictions). The system uses peer-to-peer agents called shepherds to replicate
u-forms amongst the venues. The shepherd agents are guided by application-
specific business rules, the specification of which are the job of the designers of
a particular system.

The precise details of the replication schemes used are beyond the scope of
this paper, and, indeed, have varied significantly over the history of the system.
One of the strengths of the techniques described here is that they do not depend
strongly on the underlying replication schemes. This means that as new peer-to-
peer techniques arise we can use them without major application-level changes.

The essential characteristics of the replication scheme are these:

– It is optimistic. That is, it does not defer replication or updates in an attempt
to guarantee consistency. Instead, it replicates under the optimistic assump-
tion that inconsistent updates are rare and can be detected and repaired
when they are detected.

– If a user has subscribed to updates on a given u-form, she will eventually
receive all relevant updates (though the order and timeliness of those updates
is not guaranteed).

We use version vectors to detect concurrent updates [27]. A version vector is
a list of counters: one counter is kept for each venue in which a given u-form has
been modified. A venue’s counter for the u-form is incremented when the u-form
is updated in that venue. Therefore the storage required for version vectors scales
with the number of venues in which a u-form is updated. Version vectors are a
rather old technique; perhaps the original reference is [27] (though we believe it
to have been independently invented many times). Version vectors are known to
be a minimal representation for detecting violations of causal history [28]. An
alternative mechanism for capturing causal history is the Hash History approach
[29]. While it provides some interesting advantages over version vectors, it must
be periodically pruned and can therefore lead to dangerous numbers of false
conflicts in a large system.

If, upon replication of a u-form, we discover that one replica’s version vector
does not strictly dominate the other replica’s, then we can conclude that con-
current modification has taken place. In some cases, the shepherd agents may
be able to determine that two concurrent updates are not incompatible, so they
are merged. Generally, however, concurrent updates result in a conflict. The
conflicted u-form is annotated with pointers to the alternate versions.

8

Users may manually resolve conflicts, or applications may have specific au-
tomatic conflict resolution rules. Manual conflict resolution, while sometimes
necessary, imposes a burden on the user, and automatic conflict resolution is
only reliable in particularly well-understood application contexts (as also demon-
strated by the designers of the Bayou system [4]). These problems grow worse as
the system scales in size and as inter-dependencies between objects grow. This
experience is consistent with the analytic results obtained by Gray in [3].

It is often better to avoid conflicts—in essence, to try to justify the optimism
of our replication strategy through appropriate design. We will see u-form data
structures that achieve this goal in section 4.

3.2 Shepherdable Indexes

Our repository infrastructure provides only very limited expressivity: given a
UUID, one can update the associated u-form or subscribe to others’ updates.
There is no low-level provision for value-based search, only UUID-based lookup.
This narrow expressivity gives us a great deal of freedom to choose different
underlying storage and replication models, and improvements in storage and
replication speed and reliability have a beneficial effect on all applications that
use the Shepherds system.

Instead of hard-wiring a few value-based searches into the infrastructure, we
build index structures that effectively enable the implementation of value-based
searches by composing several UUID-based searches. An index is a data structure
that efficiently maps a key or range of keys to one or more values (typically
UUIDs).4 We represent indexes by organizing u-forms into tree-like structures,
and annotating the u-forms in the tree with key information dictating which
sub-tree is relevant to the query at hand. For example, a typical “index node
u-form” may contain information that an index reader will interpret as “follow
relation u1 for names beginning A–L, follow relation u2 for names beginning
M–Z.”

A hallmark benefit of this approach is that index nodes are replicated on
demand by the shepherds, just like any other u-forms. This means that once a
user has performed a particular search while online, this search can be repeated in
the future when offline. An index with this property is called shepherdable. For a
detailed account of shepherdable index structures see [30]. We have implemented
and routinely use B-tree style structures [31] for handling one dimensional queries
and R-tree style structures [32] for multi-dimensional and geo-temporal queries.

One important use of indexes in collaborative systems is the support of what
we call virtual relations. Recall that a relation is formed when a u-form con-
tains a UUID (or set of the UUIDs) as the value for one of its attributes. It is
not always desirable (for all the usual reasons: access control, scalability, etc.)
to directly encode relations in one of the u-forms implicated. Instead, we can
construct an index whose keys and values are both UUIDs. Such an index is
a mapping from UUIDs to UUIDs: thus, a virtual relation. Virtual relations

4 In some sense a collection is a trivial sort of index with linear query performance.

9

are used extensively in the Universal Genetics Database [33], a research project
that uses the Shepherds system to represent and share publicly available genetic
databases, and enables researchers to annotate and reuse particular genes from
these databases for special purpose projects, without writing to the centrally ad-
ministered database. We will use this technique in section 4.3 to support standoff
annotation and commentary.

3.3 Digital Signatures, Security, and Trust

We have seen that modifying the same u-form in many venues increases the
likelihood of conflicts, and increases the amount of book-keeping information we
must store in the form of longer version vectors. These facts act as forces that
encourage us to keep the number of venues modifying a particular u-form small.

In practical systems, another consideration also plays a major role. In many
cases, not every user has the authority to modify every u-form in the system. It
is not necessary for a user to consistently use the same venue, but it is common
that a given user will only use a small number of venues. Therefore, if the number
of users permitted to modify a u-form is small, the number of venues in which
it will be modified is also likely to be small.

To protect u-forms from being maliciously or accidentally modified, we em-
ploy digital signatures. A good comprehensive introduction to technologies such
as digital signatures, cryptographic hashing, and encryption can be found in [34].
Signatures are attached to u-forms as normal attribute values, and public key
credentials are published in the system as u-forms. This allows shepherd agents
and applications to verify that u-forms are only updated by their proper owner.5

Fully- or partially-immutable u-forms can also be created by using crypto-
graphic hashes of the u-form content as part of the UUID for the u-form. These
are of somewhat less interest in highly dynamic collaborative systems, but are
very useful for storing certain kinds of data.

4 Collaborative Structures

Our experience with the Visage project demonstrated to us the value of using
u-forms as a shared collaborative space that operates by allowing a set of users
to update a shared set of u-forms. We wish to design publicly available systems
that do not presuppose investment in major datacenters, and that also sup-
port collaboration between users with poor or intermittent connectivity. These
requirements guided us towards investigating optimistic replication and a peer-
to-peer approach.
5 There remain a variety of potential attacks that we will not discuss in this paper.

One is a spoofing attack that we call a “land grab” in which a malicious user creates
a new u-form with a pre-existing UUID. This results in two apparently valid but
competing signed u-forms. Such an attack must resolved through human arbitration
or high quality automated reasoning. Another class of attacks involves denial-of-
service, and is best addressed in the replication layer.

10

We have seen, though, three distinct pressures that require us to minimize
the number of venues in which a given u-form is modified. One is the book-
keeping associated with version vectors and conflict detection; a second is the
difficulty of lazily reconciling conflicts; and a third is the natural tendency to
need to restrict write access to a subset of users. On the other hand, a legitimate
worry is that restricting the original update-anywhere-anytime policy will impair
collaboration.

In this section we examine techniques that help us to have our cake and eat
it too. We describe a series of multi-u-form structures, along with conventions
for using them, that let us perform many kinds of collaboration without needing
to update the same u-form in many venues.

4.1 The Carrier Pigeon Protocol

One useful tool for collaboration is simple messaging: the ability for one user
to send another user a message. Not only are the messages themselves handy
for instant messenger or email style applications, but having such a technique
available allows a distributed workflow: one user can request another user or
automated agent to perform an action on his behalf.

As we have seen, our replication system does not presuppose that any two
users are simultaneously connected. If each user is only intermittently connected,
it may be that there is never transitive connectivity between them in the under-
lying network. However, our system does guarantee that replication eventually
makes progress. Therefore the solution is to mediate messaging through u-form
updates.

The most obvious way to do this is to have the two users who wish to commu-
nicate simply read and write to a shared u-form. This, however, leads to frequent
conflicts.

Instead, we arrange matters so that each user has an outbox. User A writes
to the A outbox, and listens to updates on the B outbox, while User B writes to
the B outbox and listens to updates on the A outbox. We arrange the protocol
as follows:

1. User A desires to send a message to user B. So User A writes an attribute
into his outbox called message X, where X is any locally unique token he
chooses (a number is a reasonable choice). The content of the message is
simply the value of the attribute message X. User A also writes an attribute
called current message id whose value is X.

2. Since User B is listening for updates on User A’s outbox, User B will even-
tually see the message. She can then decide upon a response and write an
attribute response X into her own outbox, where X matches the message
identifier token chosen by user A. The value of the attribute response X is
the response to User A’s message.

3. Since User A is listening for updates on User B’s outbox, he will eventually
see the response. At that point, he can remove the message X attribute from
his outbox, keeping the outbox size reasonably small.

11

4. User B will eventually notice that User A has removed the message X mes-
sage. Consequently, User B can remove the response X response from her
outbox.

The important thing to notice about this technique is that it is guaranteed
to eventually succeed as long as the underlying replication scheme—no matter
what it is—can make progress. Moreover, no single u-form is modified by more
than one user, so no conflicts occur, no security policies are violated, and no
extra version vector housekeeping is incurred.

4.2 Collections and Recursive Collections

As we mentioned earlier, it is easy to construct a u-form that holds references to
many other u-forms. We call such u-forms collections, and they are very useful
for defining datasets, that is, sets of u-forms that a given user community is
interested in.

!"#$$$"%&'#())

*+,-.! /01,2+3456##7-885911:/

;-,%-78.5! !"#$$$"%&'#$<5

! !"#$$$"%&'#($+5

! !"#$$$"%&'#()=

*+,-.! />-7813+?56##7-885911:/

;-,%-78.5! !"#$$$"%&'#$<55

! !"#$$$"%&'#$-

!"#$$$"%&'#())

Collection U-Form for
Address Book 1 (Personal)

Collection U-Form for
Address Book 2 (Company)

U-Form for shared address

!"#$$$"%&'#$<

*+,-.5! /91%5@ABBA38/5

6##7-88.5! /'=C)567B4?-56D-/55

>E13-.! /=)F5'''5''''/

G,+A?.5! /%1%H31IE-7-(&1,/

0AJ4.! />AJJ8%K7BE/5

LJ+J-.5! />6/

MA2501#-.5! /)'F)$/5

01K3J74.5! /NL6/

!"#$$$"%&'#$-

*+,-.5! /O(5L,AJE/55

6##7-88.5! /'=C'567B4?-56D-/55

>E13-.! /=)F5'''5PPPP/

G,+A?.5! /*13-/

0AJ4.! />AJJ8%K7BE/5

LJ+J-.5! />6/

MA2501#-.5! /)'F)$/5

01K3J74.5! /NL6/

!"#$$$"%&'#()=

Fig. 3. Several collections

Many of our visualization appli-
cations depend strongly on shared
collections. For instance, a military
commander may be examining a col-
lection of his aircraft in a map vi-
sualization, while, simultaneously, a
logistics officer is viewing the same
set of aircraft in a chart showing fuel
and ammunition supplies. It is very
useful for these visualizations to be
encoding the same collection u-form,
so that if it is modified (say, to add
or remove an aircraft), both visual-
izations are updated.

Collections, however, are very
difficult to update consistently in
a distributed fashion if many writ-
ers are involved. There is no unique
“ground truth” method for produc-
ing a single collection by resolving several edits in different venues, especially
if a globally consistent ordering is to be preserved. Moreover, the expense of
version vectors is incurred and many users must have the authority to update
the collection u-form.

One solution to the problem is to make one user the owner of the collection,
and have any other user that wishes to modify the collection send a message (see
section 4.1) to that user. This, in effect, converts our multi-master distributed
system into a single-master client-server system for this particular piece of data.
The nice thing about this approach is that any collection semantics can be
supported, and we can assign ownership however we like for various pieces of data

12

and datasets. The downside is that if the owner of the dataset is unreachable
then no updates can be performed.6

Another solution is to factor a single collection u-form into a recursive col-
lection. A recursive collection is a collection u-form whose member u-forms are
themselves collections, together with some annotation to distinguish between the
intent of adding a single collection or adding all the members of that collection.
We can assign ownership of each “child” collection to a different user, and we
can interpret the recursive collection as containing the union of the members of
its children.

This works well provided ordering is not crucial to the application, and pro-
vided no single user needs to be able to fully delete an item from the recursive
collection (since she cannot delete it from other people’s “child” collections, only
her own). Version vectors are kept small and digital signatures are easy to man-
age, because there is a one-to-one relationship between users and the collection
u-forms they modify. In some situations it can be argued that managing the
security policy, the conflict resolution, and the large version vector on a single
collection provides superior performance to tracking all the child collections in a
recursive collection. It must be noted, though, that safety demands that version
vectors be kept forever, whereas only currently interested users need maintain
child collections.7

Setting up the recursive collection can be handled using a single-writer-via-
carrier-pigeon approach, since changes to the set of interested users (who also
need to write) are probably comparatively infrequent.

It is likely that recursive collections can be generalized with additional anno-
tations to support approximate or limited guarantees on the ordering of elements,
but we have not yet experimented with this concept.

4.3 The Publication and Annotation Mechanism

Virtual relations, described in section 3.2, arm us with a powerful tool. A user
can associate one u-form with another without requiring write access to either u-
form. Instead, the user simply needs write access to a virtual relation index that
supplies the mapping or, more commonly, someone to add the virtual relation
on the user’s behalf.

We have established a convention for using such virtual relations to perform
collaborative enrichment of information. (The application of this mechanism to
annotation of linguistic corpus data is described in [35].)

We define an author to be a user who creates u-forms and may be interested
in annotating existing u-forms.

6 It should be noted, though, that the carrier-pigeon message approach will automat-
ically queue messages until connectivity is restored, so updates are not lost, only
deferred.

7 Technically, it is possible to prune version vectors if a safe distributed transaction
can be performed over every venue in the system. Unfortunately, for internet-scale
systems with intermittent connectivity such a transaction is essentially impossible.

13

A publisher is some agent who vouches for the veracity of a piece of infor-
mation. Each publisher also maintains a well-known virtual relation index. An
author may be his own publisher, or may cooperate with a well-known publishing
organization.

A theme is a u-form defining an area of interest for some community of users.
These could be created in an ad-hoc fashion, or worked out in a standardization
process. It depends on what the publishers and users find most convenient; the
system doesn’t care what mechanism is used to agree upon the meaning of
themes—they are treated as unique labels.

An annotation is a u-form that comments upon another u-form with respect
to some theme. (Because an annotation is itself a u-form, it might be the target
of further annotations. The same goes for themes themselves.)

Each publisher maintains an index whose keys are UUIDs of u-forms that
are being annotated (it is thus, by our earlier definition, an index of virtual
relations). The values in the index are UUIDs of collections that store UUIDs of
annotation u-forms, sorted by theme.

A user who wishes to publish an annotation on an existing u-form creates
the annotation u-form, and uses a carrier-pigeon channel to ask the publisher to
relate the new annotation to the existing u-form through the publisher’s index8.
To maintain the integrity of the index, a publisher will typically copy the user’s
annotation to u-form that is signed by the publisher, and publish this version,
rather than publish the user’s original annotation (this avoids “bait and switch”
abuses).

Similarly, if a user knows of a publisher’s index, and a source u-form of
interest, she can efficiently find all the themes and annotations published by
that publisher for that source u-form by looking up the source u-form UUID in
the publisher’s index.

In practice, this technique supports rich stand-off annotation and commen-
tary without requiring users to modify each others’ u-forms. We will discuss an
existing application of this mechanism in section 5. An advantage to using stand-
off annotation over direct modification of data is that competing viewpoints and
opinions can be captured and expressed. This is a much more natural mode of
discourse in many respects than a tug-of-war over a single mutable information
object.

Stand-off annotation is only a recent description of the much older scholarly
practice of citation with commentary. This technique can be found in ancient
Greek writings and in early scriptural scholarship. The tendencies apparent in
such practices are the same as those we see today: the more definitive a text, the
more people wish to comment upon it, and the less likely they are to be able to
edit the definitive version with inline annotation or markup.

8 The publisher, of course, is free to pursue any policy for deciding whether or not
to publish an annotation. And, of course, a user may self-publish if no publisher is
willing to work with him.

14

5 A Comprehensive Application: Collaborative,
Distributed GIS

Our Geobrowser application [23] leverages all these techniques to support col-
laborative, distributed GIS. What do we mean by that? A Geobrowser user can
browse and explore a large shared dataset of u-forms describing political and
physical features of the Earth. (This dataset, called the Information Commons
Gazetteer, is quite complex and is built from many freely available sources. Its
structure is described in detail in [36].) The user can also create her own data
and datasets and share them. She can also enrich existing datasets through the
publication mechanism.

Each Geobrowser contains a database node that is part of the Shepherds
system. Consequently, the Geobrowser application works well whether or not it
is currently connected to the internet.

Fig. 4. The Geobrowser

Let’s walk through some of the techniques we have discussed and identify
how they support specific Geobrowser features.

– U-forms are used to represent all of the data and much of the implementation
of the Geobrowser application. It is thus “self-updating” since the underlying
replication mechanism will update relevant u-forms transparently.

– Digital signatures are created and checked automatically by the tools in the
application using the active user’s credentials.

– Carrier-pigeon protocols are used to support creating new Geobrowser users
(a master index of users and public key credentials is maintained).

15

– Collections are used extensively to structure and organize data. Users can
easily create and share new collections (as well as other sorts of u-forms).

– U-form based indexes are used to accelerate access to over 5 million physi-
cal and political features of the world. Both geo-temporal and string-search
indexes are provided.

– The publication mechanism can be employed by users to provide free-text
comments on any u-form in the system. The publication mechanism is also
used to associate more structured data from multiple sources: for instance,
data from the Wikipedia has been associated with the Information Commons
Gazetteer through the publication mechanism.

The Geobrowser is in active development and is becoming a tool that reaches
far beyond GIS. It is being used to as a content management system for the Com-
munity Directory websites [24, 25], and to support research and collaboration in
the biomedical domain [33].

6 Conclusion

U-forms as a shared collaborative space are a valuable and powerful tool. Op-
timistic peer-to-peer replication allows us to increase the reach of u-form based
systems by improving scalability, and by allowing us to operate in disconnected
or poorly connected environments.

This capability comes at a price, however. Managing conflict-detection book-
keeping in the form of version vectors can grow expensive over time as u-forms
are updated in many venues. Lazy conflict resolution increases in difficulty as
the number of conflicts grows and as the complexity of u-form structures grows.
As the number of users grows, the desire for access control to protect data from
accidental or malicious tampering also argues against overpermissive editing
policies.

To continue to support rich collaboration despite these challenges, we have
developed a variety of higher-level structures and protocols on top of our basic
u-form storage and replication system. The high-level techniques demand only
very weak guarantees from the underlying system, allowing us the freedom to
exploit technological progress as it becomes available.

These high-level structures support simple user-to-user messaging, multi-
writer datasets, and rich multi-user annotation and elaboration of data. We
believe that other researchers interested in large-scale collaborative systems may
also find these patterns efficient and effective.

Future work will continue to improve the efficiency and utility of these struc-
tures without compromising their ability to scale. Simultaneously, we are con-
tinuing to explore new replication and storage technologies for the underlying
system. We are also developing end-user applications and tools for a variety of
domains, including bio-informatics and GIS.

16

References

1. Lucas, P., Senn, J., Widdows, D.: Distributed knowledge representation using
universal identity and replication. Technical Report MAYA-05007, MAYA Design
(2005)

2. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys 37 (2005)
3. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a

solution. In: Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data. (1996) 173–182

4. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in Bayou, a weakly connected replicated stor-
age system. In: Proceedings of the 15th ACM Symposium on Operating Systems
Principles (SOSP-15), Copper Mountain Resort, Colorado. (1995)

5. Lucas, P.: Civium: A geographic information system for everyone, the Information
Commons, and the Universal Database. In: Vision Plus 10, Lech/Arlberg, Austria
(2003)

6. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able Peer-To-Peer lookup service for internet applications. In: Proceedings of the
2001 ACM SIGCOMM Conference. (2001) 149–160

7. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science
2218 (2001) 329

8. Kubiatowicz, J., Bindel, D., Chen, Y., Eaton, P., Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.: Oceanstore: An architecture
for global-scale persistent storage. In: Proceedings of ACM ASPLOS, ACM (2000)

9. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooper-
ative storage with CFS. In: Symposium on Operating Systems Principles. (2001)
202–215

10. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage
utility. In: Proceedings of HOTOS (Hot Topics in Operating Systems). (2001)
75–80

11. Roth, S., Lucas, P., Senn, J., Gomberg, C., Burks, M., Stroffolino, P., Kolojejchick,
J., Dunmire, C.: Visage: A user interface environment for exploring information.
In: Proceedings of Information Visualization, San Francisco, IEEE (1996) 3–12

12. Lucas, P., Senn, J.: Toward the Universal Database: U-forms and the VIA Repos-
itory. Technical Report MTR02001, MAYA Design (2002)

13. Dertouzos, M.: What Will Be. Harper, San Francisco (1997)
14. Leach, P., Mealling, M., R.Salz: A UUID URN namespace. Technical report, The

Internet Society (2004) Current draft, awaiting approval.
15. Manola, F., Miller, E.: RDF primer (2004)
16. Lucas, P., Widdows, D., Hughes, J., Lucas, W.: Roles in the universal database:

Data and metadata in a distributed semantic network. Technical Report MAYA-
05009, MAYA Design (2005)

17. van der Vlist, E.: XML Schema. O’Reilly (2002)
18. Higgins, M., Lucas, P., Senn, J.: VisageWeb: Visualizing WWW Data in Visage.

In: Symposium on Information Visualization (Infovis), IEEE (1999) 100–107
19. Lucas, P.: Mobile devices and mobile data: Issues of identity and reference. Human

Computer Interaction 16 (2001) 323–336
20. Bishop, D., Lucas, P.: Polymorphic collaboration: Beyond relaxed WYSIWIS in

Visage-Link. Technical Report MTR-02007, MAYA Design (2002)

17

21. Project, D.: Command post of the future (CPOF) (2005) http://www.darpa.mil/
ato/programs/CPOF/DT.htm.

22. General Dynamics: GD Viz (2005) http://www.gdviz.com/.
23. MAYA Design, Inc.: Civium Workbench (2002) http://civium.maya.com/.
24. Allegheny County Department of Human Services: HumanServices.net (2006)

http://www.humanservices.net/.
25. A-Plus Schools: Pittsburgh After School (2006) http://www.pghafterschool.com.
26. MAYA Design, Inc.: Buskarma (2002) http://www.buskarma.com/.
27. Parker, D., Popek, G., Rudisin, G., Stoughton, A., Walker, B., Walton, E., Chow,

J., Edwards, D., Kiser, S., Kline, C.: Detection of mutual inconsistency in dis-
tributed systems. IEEE Transactions on Software Engineering SE-9 (1983) 240–
247

28. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems.
Information Processing Letters 39 (1991) 11–16

29. Kang, B.B., Wilensky, R., Kubiatowicz, J.: Hash history approach for reconcil-
ing mutual inconsistency in optimistic replication. In: 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS’03). (2003)

30. Higgins, M., Widdows, D., Balasubramanya, M., Lucas, P., Holstius, D.: Shepherd-
able indexes and persistent search services for mobile users. In: 8th International
Symposium on Distributed Objects and Applications (DOA 2006), Montpellier,
France (2006)

31. Sedgewick, R.: Algorithms in C. Addison-Wesley (1990)
32. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-

ceedings of SIGMOD. (1984) 45–47
33. Widdows, D., Barmada, M.: The Universal Genetics Database: Information sharing

in genetics and beyond. BioTech International 18 (2006) 11–13 (Byline article).
34. Schneier, B.: Applied Cryptography. 2nd edn. John Wiley and Sons (1996)
35. Balasubramanya, M., Higgins, M., Lucas, P., Senn, J., Widdows, D.: Collabora-

tive annotation that lasts forever: Using peer-to-peer technology for disseminating
corpora and language resources. In: Fifth International Conference on Language
Resources and Evaluation (LREC 2006), Genoa, Italy (2006)

36. Lucas, P., Balasubramanya, M., Widdows, D., Higgins, M.: The Information Com-
mons Gazetteer: A public resource of populated places and worldwide adminis-
trative divisions. In: Fifth International Conference on Language Resources and
Evaluation (LREC 2006), Genoa, Italy (2006)

18

