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Abstract

This paper describes the use of continuous vector space models for rea-
soning with a formal knowledge base. The practical significance of these
models is that they support fast, approximate but robust inference and hy-
pothesis generation, which is complementary to the slow, exact, but some-
times brittle behavior of more traditional deduction engines such as theo-
rem provers.

The paper explains the way logical connectives can be used in seman-
tic vector models, and summarizes the development of Predication-based
Semantic Indexing, which involves the use of Vector Symbolic Architec-
tures to represent the concepts and relationships from a knowledge base of
subject-predicate-object triples. Experiments show that the use of continu-
ous models for formal reasoning is not only possible, but already
demonstrably effective for some recognized informatics tasks, and show-
ing promise in other traditional problem areas. Examples described in this
paper include: predicting new uses for existing drugs in biomedical infor-
matics; removing unwanted meanings from search results in information
retrieval and concept navigation; type-inference from attributes; compar-
ing words based on their orthography; and representing tabular data, in-
cluding modelling numerical values.

The algorithms and techniques described in this paper are all publicly
released and freely available in the Semantic Vectors open-source software
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package.1

1 Introduction

Logic traditionally relies on discrete mathematical systems, rather than the
continuous geometric representations that are foundational in mechanics and
physics. These particular associations between branches of mathematics and
their application domains are already well-developed in the writings of Aris-
totle,2 and became de facto paradigms for centuries.

More recently, these paradigms have been challenged with many useful and
startling results. Early in the twentieth century, discrete structures reappeared
in physics partly due to the development of quantum mechanics (see e.g., von
Neumann (1932)). Conversely, new sciences such as information retrieval have
incorporated continuous methods into analyzing language (Salton and McGill,
1983; van Rijsbergen, 2004), a traditional province of discrete symbolic reason-
ing; and continuous-valued logics such as fuzzy logic have been developed
and applied to many areas (Zadeh, 1988). As part of this boundary-crossing
development, this paper demonstrates that continuous methods, more tradi-
tionally associated with linear algebra, geometry, and mechanics, can be used
for logic and reasoning in semantic vector models.

The uncompromising nature of discrete symbolic logic is of course vitally
important to many applications. Most obvious perhaps is mathematics itself,
where a theorem must be proved to be true without doubt: mathematical proof
does not embrace a “partially true” state! But in many cases, such demonstra-
ble certainty in results is unattainable or undesirable. In our criminal justice
system, “beyond reasonable doubt” is the benchmark. Psychological exper-
iments have demonstrated that humans judge belonging to a category rela-
tively, not absolutely: for example, people are quick to judge that a robin is
a bird, but take longer to make the same judgment for a chicken or a pen-
guin (Rosch, 1975; Aitchison, 2002), and the question “Was the archaeopteryx
a bird?” is open to reasonable discussion. A variety of algebraic operators
on vector spaces can be used to model such graded reasoning, with concep-
tual representations whose relationships and tendencies are learned from large
amounts of training examples. Graded reasoning modelled in this way need
not be probabilistic (in the sense of estimating the chance that an event will
or will not take place), but it does need to quantify the notions of nearer and

1http://semanticvectors.googlecode.com
2For canonical examples, compare Aristotle’s introduction of discrete symbols in logic for

things that are either affirmed or denied (Prior Analytics, Bk I), as against the continuous treatment
of physical magnitudes, locomotion, and time (Physics, Bk VI).
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farther, stronger and weaker, and so on. As in quantum mechanics, probabil-
ities of different outcomes can sometimes be derived from these measures of
association.

This paper describes some of these methods and their applications, partic-
ularly Predication-based Semantic Indexing (PSI), which represents traditional
“subject–predicate–object” relationships (such as “aspirin TREATS headache”)
using points and operators in a vector space. Section 2 introduces the tradi-
tional vector model for search engines, and how the vector sum and orthog-
onal complement can be used to add logical disjunction and negation to such
systems. Section 3 explains why the robustness of such models stems directly
from the mathematical properties of vectors in high dimensions: in particular,
the way that in higher dimensions, the chances of accidentally confusing two
known vectors become very small, even in the presence of considerable noise.
These properties are crucial for the recovery of basic elements from compo-
sitional structures in Vector Symbolic Architectures (VSAs), which enrich the
standard additive operations on vectors with a multiplicative binding operator,
and are described in Section 4.

Section 5, the heart of the paper, illustrates a significant application of VSAs
to logical deduction, a method we call Predication-based Semantic Indexing
(PSI). For complex inferences with many pathways, PSI is sometimes espe-
cially robust (because reasonable doubt in one step is propagated throughout a
chain of deductions), and computationally simple (because many logical com-
binations can be searched simultaneously using the same query, an example
of entangled superposition whose mathematics is identical to that of quantum
theory). This section also summarizes some experimental results-to-date that
demonstrate that PSI is already successful as a large-scale working system.

Section 6 goes on to introduce several related applications, including the
discovery of reasoning patterns, orthogonal negation in PSI models, type-systems,
orthographic encoding, and the representation of structured tabular data and
continuous quantities. Finally, Section 7 describes related work, in the hope of
giving the reader a small taste of the wealth of research activity ongoing in this
area, and Section 8 concludes the paper.

2 Vector Models for Search, and their Logical Con-
nectives

In the early decades of information retrieval (roughly the 1950s to the 1980s),
the challenge was modelled as “finding all the documents in a collection rel-
evant to a given query”. As document collections grew, this swiftly became
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Table 1: A term–document matrix

Doc1 Doc2 Doc3 ... Docm
Term1 M11 M12 M13 ... M1m

Term2 M21 M22 M23 ... M2m

Term3 M31 M32 M33 ... M3m

... ... ... ... ... ...
Termn Mn1 Mn2 Mn3 ... Mnm

untenable, especially since the rise of the World Wide Web: there is no use in
returning to the user every webpage that is relevant in some way to the query
New York. This observation naturally led to the conclusion that search results
need to be ranked: not just divided into relevant and non-relevant, but pre-
sented to the user starting with the most relevant. Thus, unlike mathematical
truth, relevance has to be treated as a graded quantity.

The vector model for search (Salton and McGill, 1983, Ch. 3) is a famous
response to this problem, other solutions including the probabilistic and fuzzy
Boolean models (Baeza-Yates and Ribiero-Neto, 1999). A vector model search
engine is created by counting the number of times each term occurs in each
document. (A ‘term’ is a word in the vocabulary, often subject to normalization
or tokenization rules such as “disregard very frequent words like the and of
”, “normalize to lower-case”, “strip off endings so that John’s becomes John”,
etc.) This counting process creates what is known as a term-document matrix
(Table 1).

In the King James Bible corpus used as an example below, this gives 12818
terms and 1189 documents (treating each chapter as a document). Typically,
modern corpora are much larger: representations need to scale to several mil-
lion terms and sometimes billions of documents, which leads to a variety of
challenges in sparse representations and distributed systems.

In this representation it’s easy to see that each term can be treated as a row-
vector and each document as a column-vector. Multiplying each element of
such a vector by an appropriate weight is called scalar multiplication, the op-
eration of adding two vectors together coordinate-by-coordinate is called the
vector sum, and these operations are crucial in the standard definition of a vec-
tor space (Widdows, 2004, Ch 5).

However, since the search engine needs to be able to assess similarity be-
tween terms and documents, a new set of document vectors D is created with
the same number of coordinates (same dimension) as the term vectors: each
such document vector d ∈ D is usually constructed as a weighted sum of the
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rows corresponding to the terms in the document, using appropriate weights.
Using the symbols from Table 1, the coordinates dj of such a vector can be ex-
pressed as dj =

∑
Termi∈Docj

wijMij , where w is a weighting function and the
sum is over the set of terms occurring in the given document.

At search time, the system looks up the row for each known term in the
query, and again adds these rows together with appropriate weights to con-
struct a query vector q. The query vector is then compared with the set of doc-
ument vectors, and returns the closest matches. The similarity between query
vectors and document vectors is scored using a suitable overlap measure. In
geometric models, the similarity measure used most typically is the cosine of
the angle between a pair of vectors, which varies between +1 and −1 and is
commutative. Rows of the term-document matrix are often normalized before
the similarity-comparison step, using the Euclidean or L2 norm.

The practice of using vector spaces to represent and retrieve documents
goes back at least to the 1960’s (Switzer, 1965), one of the most famous work-
ing implementations being the SMART system (Salton and McGill, 1983). The
model has many modern descendants, including (for example) Apache Lucene,
a widely-used open-source search engine.3 Though simple and precise, the
term-document matrices tend to be very sparse. To concentrate or distill the
information in such matrices, dimension-reduction techniques are sometimes
used, the best-known of which is singular-value decomposition. That is, an
n×mmatrixA can be factorized as the product of three matrices Û Σ̂V ∗, where
the columns of Û are orthonormal, V ∗ is an orthonormal matrix, and Σ̂ is a
diagonal matrix which can be ordered so that the values along the diagonal
(called the singular values) are non-increasing. Taking the first k singular val-
ues and leaving the rest zero leads to a simplification of the original matrix
which retains the most important variations in the original vectors in a vector
space where each row has k coordinates, thus projecting the original space onto
a lower-dimensional subspace. The application of this technique to a term-
document matrix is called Latent Semantic Indexing or Latent Semantic Anal-
ysis (LSA) (Deerwester et al, 1990; Landauer and Dumais, 1997). LSA has been
widely studied and several alternatives have been implemented.

Term vectors can be compared with one another, and the space can be
searched for the nearest neighbors of any given term. An example is shown in
Table 2, which shows the terms with the highest similarity with fire and water
in a model built from the chapters in the King James Bible, using the Semantic
Vectors package, a freely available open-source software package maintained

3See http://lucene.apache.org.
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Table 2: The nearest words to fire and water in an LSA model built from 1189
chapters in the King James Bible. Real vectors, dimension 200.

fire water
fire 1.000000 water 1.000000
offer 0.600808 toucheth 0.566327
offering 0.569526 bathe 0.539766
sweet 0.468413 issue 0.517784
flour 0.466211 wash 0.513593
savour 0.465213 copulation 0.504446
burn 0.460434 clothes 0.479129
burnt 0.459722 rinsed 0.461367
meat 0.448330 separation 0.439121
shall 0.443111 unclean 0.422366

by the authors (Widdows and Cohen, 2010).4

As we come to apply vector models to more complicated reasoning tasks in
the rest of this paper, it is important to bear in mind that vector model search
can be done quite quickly even with large vocabularies. For example, with a
vector of 200 dimensions whose coordinates are represented by 4-byte floating
point numbers, the memory requirement is on the order of 1 kilobyte for each
term or document vector (that is, 200 * 4 for the vector plus a generous 200
bytes for the name / identifier of the item being indexed). So approximately 1
million terms and their vectors can be represented in 1 gigabyte of main mem-
ory, which is well within the capabilities of standard hardware today. This can
be searched linearly in comfortably under 3 seconds in experiments on one of
the authors’ laptops. This is not dramatically fast when compared with other
keyword-based search engines, but when applied to tasks that involve chains
of reasoning, it is dramatically faster than many symbolic alternatives.

For all of the above, there are corresponding probabilistic formulations.
Rows in the term-document matrix are normalized using an L1 norm (that
is, the coordinates are rescaled so that they sum to 1, whereas with the Eu-
clidean or L2 norm, the sum of the squares of the coordinates is 1). Rows are
compared using a probabilistic measure such as the Kullbeck–Liebler diver-
gence, which measures the amount of information lost when approximating
one distribution with another (Manning and Schütze, 1999, §2.2.5). Matrix de-
composition is likely to use a suitable non-negative matrix factorization, so that
the coordinates can be interpreted as probabilities (with some geometric meth-
ods such as LSA, negative coordinates arise naturally through projection onto
a subspace, even if all the initial coordinates are non-negative). We emphasize

4See http://semanticvectors.googlecode.com.
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this point here so that the reader is aware that there is a large body of work on
probabilistic models for text in the statistical machine learning literature (see
e.g., Blei (2012)), and that these models have some differences but also much in
common with the geometric vector models.

2.1 Logical Operators in Vector Space Models

As well as adding term vectors together to form simple vector representations
for queries or documents, such spaces can be explored to a limited extent using
vector versions of the traditional logical NOT and OR operators. An appropri-
ate NOT operator for two vectors a and b is the projection of a onto the subset
orthogonal to b, that is:

a NOT b = a− a · b
|a · b|

b (1)

For example, the term vector for pharaoh in the King James Bible has neigh-
bors that are associated with two different Pharaohs in two different stories
(that is, the story of Joseph in Genesis and the story of Moses in Exodus). The
term magicians is only pertinent to the Exodus story, and projecting the vector
for pharaoh so that it is orthogonal to the vector for magicians brings the vector
for joseph from position 20 to the top of the list. A more systematic examina-
tion of such behavior demonstrated that removing unwanted terms using such
projection techniques does a much better job at also removing neighbors and
synonyms of the unwanted terms than just removing documents containing an
unwanted term from search results (Widdows, 2003). The effect is particularly
marked when multiple terms are removed by projecting the original query so
that is is orthogonal to all of these related terms. This involves creating a sub-
space spanned by all the unwanted terms, so in vector logic, the disjunction
a OR b becomes modelled by the plane spanned by a and b. The query vector
is then projected onto the subspace orthogonal to the plane spanned by a and
b, by subtracting appropriate linear multiples of the a and b vectors.

This leads to a logic of projection operators in vector spaces. Each projec-
tion operator projects onto a (linear) subspace; the conjunction of two operators
projects onto the intersection if these subspaces; their disjunction projects onto
the linear sum of these subspaces; and the negation is the projection onto the
orthogonal complement. Such a logic has in fact been known since the 1930’s,
when it was introduced by Garrett Birkhoff and John von Neumann to model
the logical relations between observables in quantum mechanics (Birkhoff and
von Neumann, 1936). The relation between the Hilbert-space model for quan-
tum mechanics and the vector models used in search engines is explored in
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Widdows (2004, Ch 7), and much more fully in van Rijsbergen (2004), part
of a growing list of applications of mathematics originally invented in quan-
tum theory to problems in other disciplines including economics (Khrennikov,
2010) and cognitive science (Busemeyer and Bruza, 2012). A discussion of
whether quantum mechanics itself is related to any of these human activities
is beyond the scope of this paper: what is clearer is that the mathematics of
high-dimensional vector spaces and their associated lattices and projections,
pioneered long before quantum theory by Hermann Grassmann (1862), has
considerable applications beyond its adoption as a model for the Hilbert-space
formulation of quantum mechanics. An introduction to Grassmann’s work in
this area, its influence on the foundations of lattice theory, the relevance of
these concepts to Boolean and quantum logic, and their impact on the design
of search engines in recent years, is presented in Widdows (2004, Ch. 7,8).

3 Special Features of High Dimensional Vector Spaces

The robust retrieval of documents that contain many terms, using vectors that
are linear combinations of the appropriate term vectors, depends on some
properties of high-dimensional spaces that are somewhat counter-intuitive if
we generalize too naively from experience in one, two and three dimensions.
Most importantly, high dimensional spaces are sparse, in the sense that vec-
tors chosen at random are likely to be almost orthogonal, and so the cosine of
the angle between them is likely to be close to zero. The distributions of the
similarity scores between randomly-chosen unit vectors in high dimensions is
shown in Figure 1.

A mathematical explanation for these distributions, and the contrast with
the low dimensions of our immediate physical experience, is given in Ap-
pendix A. Similar conclusions are reached by Kanerva (1988, Ch. 1) with binary-
valued vectors, and by Sandin et al (2011) with ternary-valued vectors (that is,
vectors whose coordinates are taken from the set {−1, 0,+1}). As Kanerva puts
it “In terms of the sphere analogy, with any point and its complement taken as
poles, almost all the space lies at or near the equator” (Kanerva, 1988, p. 19).

The observation that two randomly-chosen vectors are likely to be almost
orthogonal has significant consequences for robust engineering and cognitive
plausibility. Firstly, it enables vectors to “recognize themselves” from a set
of randomly-assigned vectors, even in the presence of significant inaccuracy
or noise. That is, suppose that X is a distinct set of (unit) vectors. Select an
element x ∈ X and add a random vector y of similar length. Assuming that y
is almost orthogonal to x, normalization to unit length gives a vector

√
2
2 (x+y),
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Figure 1: Distributions of cosine similarities between randomly-chosen vectors
in high dimensions

whose similarity to x is roughly
√
2
2 ≈ 0.7, which in high dimensions is far

above the region of similarities expected by chance (again, see Figure 1). It
follows that out of all the elements in the set X , a noisy vector x + y will still
easily be recognized as a distorted copy of x (or y) rather than any other vector.
As Kanerva puts it, “if 200 features (20%) can be determined with certainty, the
remaining 800 features can be assigned zeros and ones at random . . . and the
test item can still be recognized” (Kanerva, 1988, p. 26).

This argument holds for any superpositions, not just noisy ones. So if x and
y are two term vectors summed to create a document vector x + y, then either
x or y as query vectors will recognize themselves as constituents of this docu-
ment vector. The extent to which this behavior can be relied upon in practice
is examined in Wahle et al (2012): with an element set of 1000 vectors, over
100 real vectors (dimension 500) can be added before a non-constituent is ac-
cidentally recognized as a constituent; and for binary vectors, this number can
be increased to over 1000 constituents without increasing the physical memory
used. This superposition property is also discussed in detail by Plate (2003,
§3.2) and by Gallant and Okaywe (2013).

Finally, it is important to note that finding almost-orthogonal vectors in
high dimensions is easy and incremental. This is very unlike the problem of
finding exactly orthogonal vectors using an eigenvalue decomposition such
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as the Singular-Value Decomposition, which is computationally intensive and
requires prior knowledge of the system to be orthogonalized. In high dimen-
sions, new elements can be created automatically with almost no effort, and
almost no danger that they will clash with preexisting elements. This is crucial
to the robustness of VSA’s, because it means that we almost never encounter
accidental similarities between elements that have nothing in common. Back
in 1739, David Hume, often acknowledged as the greatest empiricist philoso-
pher of modern times, postulated that our sensations and perceptions lead to
mental representations called impressions, and that:

every simple idea has a simple impression, which resembles it, and
every simple impression a correspondent idea. (Hume, 1739, Bk I,
Part I, §1)

Initially it may seem a daunting task to create such impressions without care-
fully organizing and curating the available representations, or alternatively
running out of memory. Instead, the investigation of similarities in high di-
mensions teaches us that there are systems where such representations are
cheap to create and robust to all kinds of noise and comingling.

4 Vector Symbolic Architectures

Thus far we have explained some of the uses of vector spaces, similarity mea-
sures, and the associated projection operators in creating relatively simple and
clearly useful search engines. These behaviors depend on the properties of vec-
tors in high dimensions, and as we saw in the previous section, the challenge in
using these spaces does not lie in creating enough diversity for different objects
to be easily distinguished and recognized: this is easy. Instead, the challenge is
to represent complex relationships between impressions and ideas in a mathe-
matical model where the natural tendency of a randomly chosen element is to
be unrelated to almost all other elements.

Most obviously, the basic way of composing term vectors in vector-model
search engines is to use the linear sum of vectors. This is commutative, in the
sense that a + b is always the same as b + a, and similarity-preserving, in the
sense that the vector dot product a · (a + b) is large. These are sometimes de-
sirable properties: for example, they enable a vector-model search engine to
find matching documents from just a handful of query terms, without being
disrupted by word order. But they are limited: one natural drawback is that
if we keep adding vectors constructed in this fashion, they eventually all con-
verge. For modelling the meaning of concepts and their combinations, this is
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untenable in many situations: for example, there are many negational descrip-
tors such as “former president”, “fake ten-dollar bill”, “red herring”, whose
effect is to combine into a concept that is clearly different from the unmodified
original. Empirically, even when composition is not negational in this sense,
when meanings depend on one another, cycles of repeated addition are only
useful for a few iterations before semantic distinctions become eroded (Cohen
et al, 2010a).

To model more general operations, we introduce at least one more opera-
tion, called binding, which will be written as ⊗. Good binding operators obey
at least the following rules:

• For two vectors a and b, a ⊗ b is a new vector, that is usually not similar
to either a or b, in the sense that a · (a ⊗ b) and b · (a ⊗ b) should be
approximately zero.

• Binding has an inverse or at least an approximate inverse operator �,
called the release operator, such that (a� (a⊗ b)) · b ≈ 1.

The release operator ensures that, given a bound product and one of its fac-
tors, we can recover the other factor with reasonable accuracy. The introduc-
tion of the binding and release operators turns a standard vector space (with
the axioms described in Widdows (2004, Ch. 5)) into a structure increasingly
known as a Vector Symbolic Architecture or VSA (Gayler, 2004; Levy and Gayler,
2008). The core operations in a VSA are summarized in Table 3. Note that sev-
eral of these rules are currently somewhat vague: for example, superposition
and measure overlap need to behave in such a way that A · (A + B) is ‘large’,
but what do we mean by large? In practice, we mean that the result must be
much larger than similarities we would find by chance. In this and many other
cases, VSAs depend very fundamentally on the high-dimensional properties
discussed in Section 3: in more dimensions, it is less likely that a large similar-
ity between randomly-chosen vectors would occur by chance, and the required
size of A · (A + B) would be correspondingly smaller. This example empha-
sizes the general point that the rules in Table 3 are mathematically a work-
in-progress. They are not, properly speaking, axioms, because axioms should
not contain vague terms like ‘near to’ and ‘relatively large’. Instead, they are
extremely useful guidelines, which may become (with suitable mathematical
development) an axiomatic definition for a VSA as an algebraic structure.

Note that the definition of Measure Overlap is different from the standard
definition of a scalar product in vector spaces: it is required that the outcome
be a real number, even if the vector space itself uses a different ground field
from the real numbers. (The ‘ground field’ of a vector space is in practice the
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Table 3: The core algebraic operations in a Vector Symbolic Architecture

• Generate Random Vector. Creates a random vector that can be used
to represent an elemental concept (that is, a concept used as an ingredi-
ent for assembling derived concepts). Random elemental vectors can be
thought of as arbitrary names or labels for concepts. Random vectors in
high dimensions are typically almost-orthogonal to one another.

• Measure Overlap. Measures the similarity between two vectors x and y,
giving a real number, x · y, typically between −1 (opposite), 0 (unrelated)
and 1 (identical). The overlap between two randomly generated elemen-
tal vectors should be near to zero (or some other value that means ‘no
significant overlap’ or geometrically orthogonal).

• Superpose. Takes two vectors x and y and generates a third vector x+ y,
such that x·(x+y) and y·(x+y) are relatively large. Superposition is some-
times called bundling in the literature. Superpositions can be weighted by
any real number.

Measure Overlap distributes over Superposition in the sense that
a · (b+ c) = (a · b) + (a · c) for all vectors a, b, c.

• Bind. Takes two vectors x and y and generates a third vector x⊗ y, such
that x · (x⊗ y) and y · (x⊗ y) are usually near to zero. However, if y and
y′ are close to each other, x⊗ y should be close to x⊗ y′.
Binding distributes over Superposition in the sense that
a⊗ (b+ c) = (a⊗ b) + (a⊗ c) for all vectors a, b, c.

• Release. Inverse of bind, written as x � y. Should behave in such a way
that (x� (x⊗ y)) · y ≈ 1.

number field from which coordinates for the vectors are drawn.) Note also that
the symbol ⊗ is not intended to denote the tensor product itself, but (like the
use of the addition symbol + in group theory), denotes an operation which in
some ways resembles multiplication, and must be defined in each particular
VSA.

Now we give some examples of VSAs over the ground fields of real, com-
plex, and binary numbers. These (and some other options) are all available in
the Semantic Vectors package: for more details, consult Widdows and Cohen
(2012).
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4.1 Real Vectors

Real vectors (that is, vectors whose coordinates are taken from the real num-
bers R) are used throughout machine learning and computational linguistics.
The most standard similarity measure between real vectors is cosine similarity,
which is simple, cheap, and works nicely with the natural definition of super-
position as the sum of two vectors.

Binding, however, is less obvious. A simple and cheap suggestion is to
use permutation of coordinates before superposing two vectors, since this has
worked well for modelling word-order effects in semantic vector spaces (Sahlgren
et al, 2008). That is, let Pn(x) be the vector obtained by permuting each coor-
dinate in x through n places, so that for example P1(x1, x2, x3) = (x3, x1, x2).
Then x⊗y can be defined as P−1(x) +P1(y). An exact inverse is easy to define,
and the rules in Table 3 are satisfied. However, it also follows from this defini-
tion that a ⊗ b + c ⊗ d = a ⊗ d + b ⊗ c, so the way in which the vectors were
combined becomes confused in the output, which can have unintended lossy
consequences. (Rules of operator precedence are standard, so that ⊗ is applies
before +.)

Other popular alternatives can be derived from the standard tensor prod-
uct operation (in coordinates, this is the product of x as column vector with y
as a row vector, giving an n-squared matrix). Tensor products have been inves-
tigated as a useful product operator in artificial intelligence (for background,
see Plate (2003, Ch 1)), with renewed interest in recent years. The quadratic
increase in dimensions can be a practical problem, one solution to which is the
circular convolution, which sums the coordinates of the tensor product along
each diagonal (from left to right, wrapping round at the left-hand edge), recov-
ering a product that is itself a vector in dimension n. (This process is described
in detail with diagrams in Plate (2003) and Levy and Gayler (2008).) The
naive method for constructing the circular convolution of two vectors is thus
to construct the tensor product and then sum along the diagonals, which takes
quadratic or n2 time: however, this can be improved by using Fast Fourier
Transforms, which enable the convolution to be computed in n log(n) time. An
approximate inverse (which becomes more exact in more dimensions) can be
defined relatively easily. This method has also been used to model word-order
effects and language n-grams, as a component of the BEAGLE model (Jones
and Mewhort, 2007).
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4.2 Complex Vectors

The use of complex numbers is ubiquitous in physics, but applications in
informatics-related disciplines have been uncommon to date (often because we
don’t know intuitively what the imaginary coordinates might be useful for).
However, there is at least one clear computational benefit to using complex
numbers for a VSA: the circular convolution is much simpler. The circular con-
volution involves summing vectors in the ‘frequency domain’, and Fast Fourier
Transforms can transform between the spatial domain and the frequency do-
main in n log(n) time. But for complex vectors this is already done: the vec-
tor in the frequency domain is effectively given by the arguments (angles) of
each complex coordinate in modulus-argument form (Plate, 2003; De Vine and
Bruza, 2010), so the circular convolution binding operator is as simple as sum-
ming the arguments of each pair of coordinates (which therefore has a simple
and exact inverse).

This easy success motivates other questions, including whether the over-
lap measure should be the standard Hermitian metric, or the circular metric
computed by comparing the angles of each coordinate (Plate, 2003, Ch. 4): and
this question leads to further questions including the nature of normalization
and the status of zero coordinates in sparse vectors. This is philosophically
and mathematically a healthy situation, because it challenges us to consider
the basic question of whether complex numbers should be treated as circular
or rectilinear.

Practically, complex vectors have been successful in some reasoning experi-
ments: due to the exact inverse and computational optimization, they can give
models that are more accurate and faster than those created using real num-
bers; and when binding is involved, they are much faster to generate than
models that use binary numbers.

4.3 Binary Vectors

The use of binary-valued vectors for representing concepts in a VSA has been
developed and championed by Kanerva (1988, 2009). A binary vector of di-
mension n is simply a string of n binary digits or bits. The overlap between
two of these bit-vectors is computed by counting the number of binary digits
in common between the two vectors (which is n minus the Hamming distance,
Hamming distance being the number of bits that differ). This can easily be
normalized to a suitable overlap measure using the definition

x · y = 1− 2

n
HammingDistance(x, y))
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where x and y are binary vectors in n-dimensions. This gives a number be-
tween −1 (all bits are opposite) and 1 (all bits are the same), with 0 if exactly
half the bits are the same and half are different.

Superposition is trickier: Kanerva (2009) recommends taking a majority
vote between constituents to choose a 0 or a 1 for each position, and break-
ing ties at random: but when summing just two vectors, ties are very frequent,
and the outcome is highly nondeterministic. This becomes a practical problem
when we try to reconstruct chains of reasoning. We partly solve this prob-
lem by making the tie-breaking process deterministic, by making the seed for
the random number generator depend in some procedural way on the vectors
themselves. Such a process can also be used to define partial sums of binary
vectors: so, for example, with suitably-weighted deterministic tie-breaking, we
can define a binary vector λa+µb such that a·(λa+µb) = λ and b·(λa+µb) = µ.
This process also enables us to define orthogonalization in the same way as for
real and complex vectors.

The binding operation predominantly used is the bitwise XOR of coordi-
nates, again following Kanerva (1988). This has the property of being self-
inverse, so in this particular example of a VSA, the bind and release operations
are the same.

Because of the need for bitwise operations such as pseudorandom tie-breaking,
the use of binary vectors can be computationally costlier than real or com-
plex vectors. However, these costs can be isolated to the appropriate indexing
phases: querying or searching models can be made at least as fast than with
real and complex numbers (or faster, because no floating-point arithmetic is
necessary). Binary vectors have been shown in experiments to be even more
robust to noise than real or complex vectors with the same storage require-
ments (Wahle et al, 2012).

4.4 Summary and Implementation Details

The VSAs described above are implemented, tested, and freely available as part
of the Semantic Vectors open source package. As well as the choice between
real, complex, and binary numbers, there are many other details and options
available that can significantly change behavior. These include:

• The availability of permutation (as introduced by Sahlgren et al (2008))
as a complementary, non-commutative binding operation.

• The use of sparse vectors (especially for real, and sometimes for complex
numbers) to represent elemental vectors. This enables models to scale
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from hundreds-of-thousands to tens-of-millions of inputs (such as large
corpora of documents) on a typical contemporary desktop machine.

• Deterministic generation of elemental vectors for any input. For example,
for a given term, one can take a deterministic hash of its string representa-
tion, and use this as the random seed to generate pseudorandom elemen-
tal vectors. One immediate benefit of such deterministic approaches is
that they reduce storage and synchronization requirements in distributed
systems.

• Reuse of semantic vectors from one modelling process as elemental vec-
tors for a subsequent modelling process. Reflective Random Indexing
(Cohen et al, 2010a) applies this method to the term-document scenario
in information retrieval, effectively predicting term cooccurrence in hith-
erto unseen documents.

For these and other reasons, the use of a particular VSA in practice always in-
cludes a considerable number of options and choices. These must be tailored to
the requirements and resources available for a particular system. For example,
for larger datasets binary VSAs preserve information more effectively, which
can improve accuracy on reasoning tasks. However, the training phase is typi-
cally more time-consuming, which may be problematic for rapid prototyping,
or for comparisons between several sets of models. In such situations the com-
putational performance of complex vectors with the circular convolution as a
binding operator is sometimes more desirable. VSAs are an important math-
ematical abstraction that describe the commonalities shared by many varied
systems that can be used for distributional semantic computing.

5 Predication-based Semantic Indexing

In this section, we describe Predication-based Semantic Indexing (PSI), a tech-
nique we have developed that uses VSAs to represent structured data from a
formal knowledge base. This is the main development described in this paper,
because it is at the heart of using continuous mathematical methods to model
formal systems traditionally manipulated using purely discrete mathematical
approaches. It is a significant development in the field of distributional se-
mantics, because since the early vector model search engines, most research
in semantic vector models and distributional semantics generally has focussed
on learning from free ‘unstructured’ natural language text, rather than formal
‘structured’ knowledge representations.
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5.1 PSI fundamentals

Let X be a set of objects and let R be a set of relations on X , that is, each
R ∈ R is a relation on X in the sense that R ⊆ X × X . A semantic vector for
each concept x is generated by summing the bound products of the elemental
vectors for each relation xRy that involves x. In symbols,

S(x) =
∑

Rj∈R

∑
y∈X

W (Rj , x, y)E(Rj)⊗ E(y) for all Rj , y such that xRjy.

Here W (Rj , x, y) is some weighting function depending on (for example) the
frequencies of the concepts x, y and the relation Rj . In practice, the inverse
relation R-INV, defined by yR-INV x if and only if xRy, is always included in
the setR.

For readers less familiar with the algebra of relations and its application to
semantics and knowledge representation, the rest of this section explains this
process in a step-by-step fashion.

Predication-based Semantic Indexing takes as input a collection of concept–
relation–concept triplets, sometimes called subject–predicate–object triples. Ex-
amples might be:

“Zeus PARENT OF Hercules”, “Insulin TREATS Diabetes”.

Such relations have natural inverses, such as

“Hercules CHILD OF Zeus”, “Diabetes TREATED BY Insulin”.

In general, for a relation R we will write its inverse as R-INV.
Relations of this nature as a category of meaning were introduced by Aristo-

tle (Categories, Ch. 7), and have come to the fore again in recent decades to sup-
port computational and electronic representations of meaning. Perhaps most
famously, such triples are at the heart of the Semantic Web initiative (Berners-
Lee et al, 2001). In the cognitive and biomedical literature they are sometimes
referred to as “propositions” or “predications”: they are thought to represent
the atomic unit of meaning in memory in cognitive theories of text comprehen-
sion (Kintsch, 1998) on the basis of evidence from recall studies (for example,
Kintsch and Keenan (1973)).

Algebraically, a subject–relation–object predication is often written xRy,
where x is the subject, y is the object, and R is the relation. PSI takes as in-
put a collection of such predications. For each such term x or relation R, its
elemental vector will be written as E(x) or E(R). Elemental vectors are gen-
erated for each concept using one of the processes outlined in the previous
section. (Alternatively, vectors from a previously-learned model can be reused
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as elemental vectors.) Elemental vectors are also generated for each type of
relation. No syntactic distinction between concept and relation types is made
when selecting elemental vectors: this distinction comes later in the training
phase depending on how these vectors are used in binding and superposition
operations.

Semantic vectors for concepts are learned gradually by binding with the el-
emental vectors of related items: thus, if we have a predication xRy, the seman-
tic vector for x, written S(x), is incremented by the bound productE(R)⊗E(y).
The same process is applied in reverse to S(y) using the inverse relationR-INV,
for which a different elemental vector E(R-INV) is generated (the elemental
vectorE(R-INV) need not be mathematically derived fromE(R) in any special
way).

For example, encoding a single instance of the predication “Insulin TREATS
Diabetes Mellitus” is accomplished as follows:

S(insulin) += E(TREATS)⊗ E(diabetes mellitus)

S(diabetes mellitus) += E(TREATS-INV)⊗ E(insulin)

(The symbol “+=” is used here in the computing sense of “add the right
hand side to the left hand side”.) Thus, the semantic vector for diabetes melli-
tus encodes the assertion that it is treated by insulin, and the semantic vector
for insulin encodes the assertion that it treats diabetes. Statistical weighting
metrics may be applied at this point to temper the effect of repeated mentions
of the same predication, and increase the influence of infrequently occurring
concepts and predicates. The net result is a set of semantic vectors derived
from the set of predications in which each concept occurs. On account of the
reversible nature of the binding operator, this information can be retrieved.
One would anticipate, for example:

S(diabetes mellitus)� E(TREATS-INV) ≈ E(insulin)

If insulin occurs in many other predications, this retrieval will be approxi-
mate, but on account of the sparse and noise-robust properties of high-dimensional
spaces explained in Section 3 we would still anticipate the vector

S(diabetes mellitus)� E(TREATS-INV)

being much closer to E(insulin) than to other unrelated elemental vectors in
the space.

This explains the fundamentals of how PSI models are built, and how in-
formation from these models can be searched and recognized.

18



5.2 PSI Examples Using SemMedDB

Much of the completed work described in this paper uses PSI models built
from SemMedDB (Kilicoglu et al, 2012). SemMedDB contains predications ex-
tracted by SemRep, a biomedical Natural Language Processing system that
draws on both knowledge of grammatical structure and domain knowledge
of the ways in which types of biomedical entities relate to one another (such as
a drug can have side effects) to extract predications from the biomedical liter-
ature (Rindflesch and Fiszman, 2003). For example, SemRep extracts the pred-
ication “Insulin TREATS Diabetes Mellitus” from the phrase “Insulin lispro
(Humalog), a novel fast-acting insulin analogue for the treatment of diabetes
mellitus”. To date, SemRep has extracted more than sixty million predications
from the biomedical literature, which have been publicly released as the part
of the SemMedDB database.

For example, Table 4 shows the results of nearest-neighbor searches for two
composite query vectors in a PSI space derived from the SemMedDB database
(specifically the June 2013 release). The PSI space is a 32,000-dimensional bi-
nary vector space that includes all predicates in
SemMedDB, and all concepts occurring 500,000 or fewer times in the database.
In addition, log(1 + predication count) and the inverse document frequency
of the concept concerned were applied as local and global weighting metrics
respectively during training.

The diabetes-related search retrieves many standard treatments for dia-
betes, as well as a few tangentially related concepts in the ten nearest neigh-
bors. The food-related query retrieves many types of food.

As VSAs use the same representational unit to represent both concepts and
the relationships between them, the same decoding process that is used to re-
trieve concepts related in a particular way can determine the way in which a
pair of concepts are related. So we would anticipate:

S(food)� E(vegetables) ≈ E(ISA-INV)

This is indeed the case in the PSI space that generated the results in Table 4,
where the nearest neighboring elemental vector representing a predicate to the
vector product S(food) � E(vegetables) is E(ISA-INV). So PSI is able to recall
the fact that vegetables are a type of food, which follows naturally from the
underlying mathematics.
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Table 4: Nearest-neighbor Searches in a PSI Space derived from SemMedDB.
Score = x · y = 1− 2

n HammingDistance(x, y).

S(diabetes mellitus)� E(TREATS-INV) S(food)� E(ISA-INV)

score concept score concept

0.039 biguanides 0.078 vegetables
0.035 insulin, regular 0.076 flavoring
0.034 acetohexamide 0.076 wheat
0.033 pancreas, artificial 0.074 rice
0.033 medical therapy 0.072 cow’s milk
0.032 islets of langerhans 0.072 cereals
0.031 drug eluting stent 0.071 soybeans
0.030 insulin, glargine, human 0.70 meat
0.030 insulin 0.67 peanuts dietary
0.029 tolbutamide 0.66 fruit

5.3 Analogical Inference with PSI

Perhaps more surprising, however, is that the noisy approximation of E(ISA-
INV) recalled in this manner is sufficient to solve a proportional analogy prob-
lem of the form a is to b as c is to ?. The nearest neighboring semantic concept
vector to the cue vector S(food) � E(vegetables) ⊗ E(bourbon) is S(whiskey).
This capacity for analogical reasoning, in which concepts are identified on the
basis of shared structural relations, underlies many of the applications we will
subsequently discuss.

In practice, accurate inference with a single cue is not always possible, but
the signal preserved in a noisy approximation of a predicate can be amplified.
One way to accomplish this is to explicitly retrieve the vector representation
for the predicate concerned. However, superposing additional cues greatly
amplifies the strength of this signal. For example,

S(food)⊗E(vegetables)�E(bourbon) + S(food)⊗E(flavoring)�E(bourbon)

is closer to S(whiskey) than either of the above summands is individually. A
more general analysis of this phenomenon is illustrated in Figure 2, which
shows the similarity between S(whiskey) and individual cue vectors derived
from the food types in Table 4, as well as the superposition of these individ-
ual cue vectors. As more cues are added, the similarity between the super-
posed product of these cues and S(whiskey) rapidly moves from the realm of
the merely improbable to more than five standard deviations above the mean
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Figure 2: Cue Superposition Amplifies Analogical Retrieval

anticipated between random vectors of this dimensionality. Of note, this de-
gree of similarity is higher than that produced by any individual cue.

Analogical inference can extend across longer predicate pathways also. Con-
sider the case of Major Depressive Disorder (MDD). The product of S(MDD)

�E(TREATS-INV) approximates the elemental vectors representing instances
of things that treat MDD, so we would anticipate that the vector for S(MDD)

� E(TREATS-INV) ⊗ E(ISA-INV) would approximate the semantic vectors
representing classes of treatments for depression (as the operation S(CLASS)

+ = E(ISA-INV) ⊗ E(INSTANCE) will have occurred during training).
For example, the five nearest neighboring semantic vectors to the vector

product S(MDD) � E(TREATS-INV) ⊗ E(ISA-INV) in the previously used
PSI space represent the concepts “reuptake inhibitors”, “antidepressive agents,
second-generation”, “antidepressive agents”, “psychotropic drugs” and “se-
lective serotonin re-uptake inhibitor”, all of which are categories of agents used
to treat depression.

Furthermore, it is possible to infer the dual predicate path connecting two
concepts from an example pair. The vector representation of
E(TREATS-INV) ⊗ E(ISA-INV) is more similar to the vector product
S(MDD) � S(reuptake inhibitors) than the vector representation of any other
pair of predicate vectors. As is the case with individual predicates, analogical
retrieval can be accomplished without explicitly retrieving the predicates con-
cerned. Instead of using an explicit predicate vector, a cue pair of vectors can be
selected whose bound product closely approximates the vector representation
of the predicate or predicate pathway concerned. Several such products of cue
pairs can be superposed, leading to a combined ‘holistic’ or ‘entangled’ repre-
sentation that cannot be decomposed into the product of any two individual
cues (Cohen et al, 2011).
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6 Applications of VSAs and PSI

This section presents a variety of new topic areas to which PSI has been applied
more recently.

6.1 Discovering Discovery Patterns

This section explores further the use of analogical reasoning in PSI space as
a means to infer previously unseen relationships between biological entities,
with a focus on the recovery and discovery of potentially therapeutic relation-
ships.

We have applied PSI to knowledge extracted by SemRep to infer therapeu-
tic relationships between pharmaceutical agents and human diseases (Cohen
et al, 2012a,b,c), using an approach we call discovery-by-analogy. The idea un-
derlying this approach is to constrain the search for potential treatments to
those that are connected to the disease in question along reasoning pathways
suggesting therapeutic relationships. The idea of using reasoning pathways
consisting of predicates, called discovery patterns, was developed by researchers
in the field of literature-based discovery (Hristovski et al, 2006). Rather than
manually constructing these pathways as had been attempted previously, we
were interested to see whether we could both infer and apply them using PSI-
mediated analogical reasoning.

For example, in the PSI space we have utilized for our examples so far,
the vector product S(insulin) � S(diabetes mellitus) generates a vector with
relatively high similarity to the vector product S(INTERACTS WITH-INV)

� S(ASSOCIATED WITH-INV), suggesting that a set of biological entities
exists that is both ASSOCIATED WITH diabetes, and INTERACTS WITH in-
sulin. When applying this pattern to the semantic vector for asthma the closest
semantic vector for a pharmaceutical agent to the resulting vector represents
dexamethasone, a commonly employed asthma therapy.

In our discovery experiments, the best results were obtained by evaluating
multiple reasoning pathways simultaneously, with around one third of the to-
tal held-out therapeutic relations ranked in the top one percent of predictions
for each of the types of cancer evaluated. The five most popular reasoning
pathways across large numbers of known treatment pairs were inferred, and
used together to ‘rediscover’ a held-out set of treatments. These reasoning
pathways were combined using the quantum disjunction operator to create a
compound search expression which was used to retrieve treatments connected
to other diseases across one, or several of these pathways (Cohen et al, 2012c,b).
Further improvements in performance were obtained by extending the length
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of the predicate pathways concerned to include popular triple-predicate path-
ways also (Cohen et al, 2012a), allowing for the recovery of around ten percent
more of the held-out set within the top one percent of predictions across all
cancer types. This was accomplished by creating second-order semantic vectors
for diseases, as the superposition of the semantic vectors of concepts that oc-
curred in a predication of predicate type ASSOCIATED WITH with the disease
in question, and using these as the starting point for inference instead of the
disease in question.

In our most recent work, we have evaluated the ability of these models to
predict the results of a high-throughput screening experiment in which over
a thousand pharmaceutical agents (that is, active pharmaceutical substances)
were evaluated for their activity against prostate cancer cells that are resistant
to commonly used hormonal therapies (Cohen et al, 2014). Of these agents,
only a small number actively inhibited the growth of these particular cancer
cells: of the 1398 evaluated agents that were represented in our PSI space,
only 68 slowed the growth of cancer cells to 1.5 standard deviations less than
the average across all agents tested (this average value was indistinguishable
from negative controls). Table 5 presents the 20 highest ranked predictions
generated by applying discovery-by-analogy to a PSI space that was deprived
of knowledge of any direct relationships between pharmaceutical agents and
types of cancer. Specifically, any predication involving a direct relationship be-
tween a pharmaceutical agent and a cancer type was withheld, as were any
TREATS relationships, to simulate discovery. In addition, only a subset of
predicates were encoded (see Cohen et al (2014) for further details). Aside
from these restrictions, parameters were identical to those used to generate the
space used in Table 4.

As shown in the table, the vast majority of the top 20 predictions occurred in
TREATS relationships with hormone-refractory prostate cancer in the predica-
tion database (most likely indicating they had an inhibitory effect on a prostate
cancer cell line, or showed efficacy in an animal model or clinical trial — though
these may also be due to natural language processing errors, or an effect ob-
served in combination with other drugs), once again illustrating the ability
of discovery-by-analogy to recover held-out TREATS relationships. In addi-
tion, seven of the top 20 predictions were amongst the small number of agents
that were effective against prostate cancer cells in our empirical experiments, a
yield of active agents approximately seven times higher than would be antici-
pated if 20 agents were selected at random.

These experiments also illustrate the efficient (albeit approximate) reason-
ing that PSI mediates. For example, with relevant vector stores retained in
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Table 5: Twenty Top Predicted Therapeutic Relationships for Hormone-
refractory Prostate Cancer

rank agent TREATS Active

1 gefitinib X
2 paclitaxel X X
3 gemcitabine X X
4 resveratrol X
5 methotrexate X
6 sorafenib X
7 tretinoin X
8 cyclophosphamide X
9 cyclosporine X
10 epigallocatechin gallate
11 sirolimus X
12 fluorouracil X
13 troglitazone
14 dactinomycin X
15 estradiol
16 topotecan X X
17 cycloheximide X
18 docetaxel X X
19 dehydroepiandrosterone
20 celecoxib X

main memory, inferring the most strongly associated dual-predicate path con-
necting two concepts can be accomplished in milliseconds, and determining
which pharmaceutical substance is most strongly associated across a multitude
of such paths can be accomplished within microseconds. Strongly ranked pre-
dictions are often connected across more than 10,000 unique reasoning path-
ways (such as docetaxel INHIBITS prostate specific antigen ASSOCIATED WITH
hormone-refractory prostate cancer). However, PSI is able to evaluate the extent
through which two concepts are related across large numbers of pathways si-
multaneously, by converting the task of exploring multiple possible reasoning
pathways into the task of measuring the similarity between vector represen-
tations. Furthermore, unlike a discrete system in which the time required to
explore such pathways increases exponentially with pathway length, the time
required for search in PSI is identical for single-, double- and triple-predicate
search once the relevant vectors have been constructed.
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6.2 Negation in PSI Models

Negation can be carried out in PSI models using orthogonal projection in just
the same way as in semantic vector models built from free text (see Section 2.1).
The basic principle is that for any vector x, “not x” is modelled as the subspace
orthogonal to x, and so the operation of negating x is performed by projection
onto this orthogonal subspace. In the particular case of a desired concept x and
and unwanted concept y, the compound concept x NOT y is represented using
Equation 1.

The example in this section (and below) uses a simple database of national
facts extracted from Wikipedia, which is included in the Semantic Vectors pack-
age, and lists the currency, capital city, and national animal of 277 world coun-
tries.5 The example query we consider is “Find countries other than the USA
that use the US Dollar.” Since the semantic vector S(united states dollar) is
learned by summing vectors of the form E(HAS CURRENCY) ⊗ E(country),
and binding distributes over addition (in the sense that a⊗ (b+ c) = (a⊗ b) +

(a ⊗ c) for all vectors a, b, c), we can decode this relationship using the release
operator, so that S(united states dollar)�E(HAS CURRENCY) gives a vector
which, in the PSI model, could be interpreted as a prototypical vector for rep-
resenting the concept “countries that use the US dollar”. Using this vector as
a query and searching for nearest neighbors correctly recovers the list of coun-
tries that use the US dollar as currency. Projecting this query vector so that it is
orthogonal to E(united states) and repeating the search gives results without
the United States, and with other similarity scores slightly readjusted accord-
ing to how similar or different the other countries are to the United States if
only the other attributes are considered. Results are presented in Table 6.

The exact scores depend on the vector type, the choice of VSA operations,
and the number of dimensions used. For comparison, the next highest-ranked
result that is not a country using the US dollar is included. Note that while
all the result sets correctly rank countries that use the US dollar over all other
results, the complex and binary result scores make a much clearer categorical
distinction than the results obtained using real vectors.

The key points to note include:

• PSI correctly finds the intended set of results.

• Projecting orthogonally to the USA vector removes this result without
removing others unnecessarily.

5This includes several regions such as England and the Isle of Man that are countries in an
informal sense but not sovereign states in an official sense, hence the large number of countries.
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Table 6: PSI results for countries that use the US dollar as currency.
Columns marked “Any” are results close to the query vector S(united states dollar) �
E(HAS CURRENCY). Columns marked “∼USA” are results close to the projection of
this vector onto the subspace orthogonal to E(united states). For each experiment, the
next highest result is included below for comparison.

Country Real, dim 1000 Complex, dim 500 Binary, dim 4096
Any ∼USA Any ∼USA Any ∼USA

bonaire 0.228 0.229 0.337 0.308 0.261 0.212
british indian ocean terr. 0.203 0.207 0.324 0.295 0.274 0.218
east timor 0.257 0.255 0.445 0.392 0.268 0.191
ecuador 0.224 0.243 0.290 0.248 0.266 0.219
saba 0.211 0.217 0.286 0.267 0.287 0.201
marshall islands 0.207 0.210 0.300 0.302 0.289 0.230
sint eustatius 0.239 0.248 0.247 0.228 0.270 0.229
turks and caicos islands 0.256 0.259 0.372 0.290 0.271 0.204
united states 0.233 0 0.492 0 0.265 0
...
hungary 0.163 0.169 . . . . . . . . . . . .
freetown . . . . . . 0.087 . . . . . . . . .
peregrine falcon . . . . . . . . . 0.098 . . . . . .
gambian dalasi . . . . . . . . . . . . 0.051 . . .
guernsey . . . . . . . . . . . . . . . 0.051

• If dimensions are reduced, eventually the recovery becomes noisy and
polluted with other results. Experiments like this can be used to tune
models by choosing appropriate numbers of dimensions.

This example demonstrates that the orthogonal negation operator used with
free text models works in this particular PSI model. Several topics remain to
be investigated, such as the behavior of orthogonal negation in PSI models
built using recursive hierarchies, the relationship between negation and nor-
malization, and the use of negation in more complex statements and chains of
reasoning.

6.3 Semantic Types

A long-time criticism of distributional models is that they do not have a type-
system or taxonomic structure. For example, the words related to ‘water’ in
Table 2 tend to be objects and actions related to water such as ‘clothes’ and
‘wash’, rather than other physical substances, and there is nothing that tells us
explicitly that water is a physical substance.

In PSI models, each predication xRy that goes into the encoding of a con-
cept x tells us that ”x has some attribute R”. In many situations, the list of
attributes of a concept can be used to assign a category or type for that con-
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cept (a process pioneered again by Aristotle, c.f. Posterior Analytics, Bk I Ch. 4,
though the notion that this defines “Aristotle’s theory of concepts” is a simpli-
fication). The type information for a concept x can therefore in some cases be
recovered by examining the possible relations of its semantic vector, and seeing
which of these relations leads clearly to another vector, rather than an empty
region of semantic space. Thus for each possible relation R, we check to see
if there is an elemental vector E(y) which is close to the vector produced by
releasing the elemental relation vector E(R) from the semantic vector S(x), so
that S(x)�E(R) ≈ E(y). If so, this indicates that the relation xRy was used in
the semantic indexing for the vector S(x), so the concept x has some relationR.
Then the collection of populated relations is compared with a list of attributes
appropriate for each type. An example result is as follows:6

0.478 lesotho : HAS_NATIONAL_ANIMAL : black_rhinoceros

0.557 lesotho : CAPITAL_OF-inv : maseru

0.535 lesotho : HAS_CURRENCY : lesotho_loti

’lesotho’ is therefore a ’COUNTRY’

This numerical example could be described informally in words as “Lesotho
has a capital city, a currency, and a national animal: it sounds as if Lesotho is a
country.”

Using a list of known attributes to infer a type in this way is a standard
technique, introduced formally at least as early as Aristotle (Posterior Analytics,
Bk I, Ch 4), and often known to computer scientists as “duck typing” (swims
like a duck, quacks like a duck, so it’s a duck). This so-called Aristotelian
approach is sometimes criticized because it is too brittle and does not account
for graded or probabilistic classification. The most famous critic was Aristotle
himself, who is strict in applying the technique to triangles in mathematics,
but often states that biological properties such as “cows have four stomachs”
are true “for the most part”. More recently, psychological experiments suggest
that belonging to a category is perceived in a graded fashion (Aitchison, 2002,
Ch 5), and Hofstadter and Sander (2013) propose that such fine gradations in
concepts are at the core of our ability to reason by analogy.

The type-recovery process for PSI is similarly ‘graded’, in that the score for
each relation is continuous, and the overall category-belonging score can easily
be made continuous as a result. This is of course standard in the construction of
any probabilistic classifier which works by combining indicative features. The

6This example uses the example National Facts dataset (available with the SemanticVectors
package), real vectors of dimension 200, and a score-cutoff value of 0.25 so that the relation a ≈ b
is defined by the inequality a · b > 0.25.
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interesting thing about type-recovery in PSI particularly is that all the features
are simultaneously encoded in a single semantic vector, and recovered using
VSA operations.

There are other ways to approach this challenge. One would be to build
classifiers for entire regions of semantic space, in much the way that “con-
cepts” are modelled as convex regions in the cognitive theory of Conceptual
Spaces (Gärdenfors, 2000). Another would be to infer a type T (x) determinis-
tically from the relations listed in the initial triple store, and to add the relation
S(x) += E(IS A) ⊗ E(T (x)) during the indexing phase. (That is, each type T
would be assigned an elemental vector E(T ), and then a binding of the IS A

relationship with this type would be added into the semantic vector S(x) and
recovered as robustly as other contributing relationships.) Another would be
to model the category T as a sum of the predicates involved in T in the PSI
space itself. This last would be the most innovative approach, and introduces
the more general question of which metadata about the PSI model can be mod-
elled within the PSI model.

6.4 Representing Orthography

In most VSA applications, the binding operator is applied to near orthogonal
elemental vectors in order to generate a third vector that is dissimilar from ei-
ther of its component vectors. From a geometric perspective, the vector prod-
uct E(A)⊗ E(B) is likely to lead to a point in space that is far from the bound
product of any other pair of elemental vectors, or any other individual ele-
mental vector in the space. So these vector products have the same desirable
property of robustness that characterizes elemental vectors, which have de-
liberately been constructed to be orthogonal, or close-to-orthogonal in space.
While this is useful for many applications, it is also the case for all the well-
behaved binding operators that, given a vectorE(B̂) that is similar toE(B), the
bound product E(A)⊗E(B̂) will lead to a point in space close to E(A)⊗E(B).
(See Table 3.)

In recent work (Cohen et al, 2012d), we have exploited this property in
order to estimate orthographic similarity, the similarity between the surface fea-
tures of a word. Previous attempts to model orthographic similarity in vector
space depended upon using a binding operator to generate near-orthogonal
vector representations of sequences of characters within a word, including
gapped sequences to allow for flexibility (Cox et al, 2011; Kachergis et al, 2011;
Hannagan et al, 2011). However, encoding in this way requires the generation
of a large number of vector products. As an alternative, we used interpola-
tion between a pair of elemental vectors to generate a set of demarcator vectors
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a predetermined distance apart from one another in high-dimensional space.
A demarcator vector, D(position), is used to encode the position of a character
within a word. So, the orthographic vector for the term “bard” is constructed
as follows:

O(bard) = E(b)⊗D(1) + E(a)⊗D(2) + E(r)⊗D(3) + E(d)⊗D(4).

The similarity between E(a) ⊗ D(2) and E(a) ⊗ D(1) is simply the similar-
ity between D(2) and D(1)). Demarcator vectors are constructed such that
D(1) · D(2) > D(1) · D(3), so the similarity between a pair of orthographic
vectors reflects the distance between the position of the characters they have
in common. The method for doing this is simple. First, orthogonal endpoint
vectors are generated for the start and the end position in the word. Then the
other demarcator vectors are generated by linear interpolation between these
endpoints.

Table 7 provides examples of nearest-neighbor search based on orthographic
similarity in a 32,000 dimensional binary vector space derived from the widely-
used Touchstone Applied Science Associates, Inc. (TASA) corpus (only terms
with at least two characters that occurred between 5 and 15,000 times in the
corpus were considered, and terms containing non-alphabet characters were
excluded). In each case, the cue consists of a misspelled word, and the nearest
neighboring terms in the corpus to this misspelling are retrieved.

As illustrated in the table, this simple encoding results in a vector repre-
sentation of terms that preserves similarity in the face of insertion, deletion,
substitution and change in the position of characters. Such representations are
of interest from a psychological perspective, as humans are also able to recog-
nize terms despite changes of this sort.

6.5 Tabular Data and Continuous Quantities

In this example, we show that the ideas used for indexing predications and en-
coding orthography can also be applied to modelling tabular data. The prin-

Table 7: Orthographic Similarity in a 32,000 dimensional binary vector space.
Each query term in bold is a misspelling / out-of-vocabulary word. The results
are the orthographically closest vocabulary words in the TASA corpus.

accomodated carribean glamourous assasination
0.394 accommodated 0.374 caribbean 0.350 glamorous 0.471 assassination
0.385 accommodate 0.335 barbarian 0.306 humorous 0.458 assassinations
0.367 accommodates 0.331 carrier 0.300 glomerulus 0.403 assassinated
0.363 accommodation 0.331 carriages 0.298 allosaurus 0.383 assistant
0.346 accommodating 0.331 carbine 0.292 homologous 0.382 assimilation
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Table 8: Nearest neighbors in a model built from tabular data, with each dis-
tinct value treated as a random elemental vector. Real vectors, dimension 200.

J. Adams T. Roosevelt
J. Adams 1.000 T. Roosevelt 1.000
Jefferson 0.257 Coolidge 0.322
Kennedy 0.255 B. Harrison 0.217
Ford 0.219 Eisenhower 0.209
Hoover 0.195 Garfield 0.197
Taft 0.191 Hayes 0.181

cipal is similarly simple: any column-value pair in a table can be modelled as
a bound product of the vector representing the column with the vector repre-
senting the value, and then these vectors can be superposed to give a combined
vector for each row. (This is equivalent to transforming a table into a set of
triples and performing PSI on the resulting triples.)

Results can, however, be initially disappointing. As an example, we used
a test dataset listing the Presidents of the USA (available with the Semantic
Vectors package, columns including name, party, state of birth, religion, years
of birth, death, taking and leaving office, and age at these times). Using ran-
dom elemental vectors for the data values, the combined vectors for the rows
tend to share features only if they have an exactly equal value in at least one
column. Example results for the queries J. Adams and T. Roosevelt are shown
in Table 8. The nearest neighbors tend to come from exact matches: for ex-
ample, John Adams and Thomas Jefferson died in the same year (1826), while
Theodore Roosevelt and Calvin Coolidge shared a party (Republican) and an
age of death (60). With such a small dataset, there is also a lot of variation
between different experimental runs when using random elemental vectors.

Results are improved by using orthographic vectors for the values, as de-
scribed in the previous section (Table 9). The orthographic similarity between
names has, for example, raised the similarity of the other Adams and Roosevelt
presidents as nearest neighbors.

However, orthographic similarity remains a poor way of comparing dates
or numbers. There is some similarity between (say) 1800 and 1801, but much
less similarity between (say) 1799 and 1800. This challenge can be addressed
using the same technique as used for generating demarcator vectors for ortho-
graphic encoding. That is, for each column that is recognized as a numerical
quantity, orthogonal endpoint vectors are created for the minimum and maxi-
mum numbers in the range of values in this column. Vectors for intermediate
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Table 9: Nearest neighbors with values treated as orthographic vectors. Real
vectors, dimension 200.

J. Adams T. Roosevelt
J. Adams 1.000 T. Roosevelt 1.000
Ford 0.808 Coolidge 0.830
Buchanan 0.794 F. D. Roosevelt 0.812
J. Q. Adams 0.788 B. Harrison 0.807
Garfield 0.788 Kennedy 0.796
Van Buren 0.788 Carter 0.791

Table 10: Nearest neighbors with dates and ages treated as numerical quan-
tity vectors, other string values treated as orthographic vectors. Real vectors,
dimension 200.

J. Adams T. Roosevelt
J. Adams 1.000 T. Roosevelt 1.000
Jefferson 0.994 Coolidge 0.969
Madison 0.992 Grant 0.964
Jackson 0.982 Taft 0.957
Monroe 0.980 F. D. Roosevelt 0.956
J. Q. Adams 0.979 Arthur 0.953

values are then generated by weighted interpolation between these endpoints.
Results using this method are shown in Table 10. Note that several spurious
results have disappeared, and historically closer presidents are now preferred.

This technique of generating vectors to represent numeric quantities can
also be used to create queries for particular columns. For example, we can now
search for items whose year of taking office or whose year of birth are close to a
particular value, by generating the vectorE(column)⊗D(year), whereD again
refers to a demarcator vector. Note the way the column is important, because
it gives both the property to be searched for, and the appropriate endpoints.
Results for year of taking office near to 1800 and year of birth near to 1900 are
given in Table 11. The method using raw elemental vectors is more or less
random, whereas the use of numeric vectors gives results that are all in the
right periods. (Results vary considerably between real, complex, and binary
vectors, the reasons for which are at present poorly understood.)

This case-study demonstrates the following points:

• Tabular data can be represented in a distributional model.

• Quantitative numeric attributes can be treated appropriately and recov-
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Table 11: Nearest neighbors for date-specific searches. Binary vectors, dimen-
sion 2048.

Orthographic vectors for years Numeric vectors for years
Took office 1800 Born 1900 Took office 1800 Born 1900

Cleveland 0.118 Fillmore 0.123 Madison 0.238 Reagan 0.751
Obama 0.116 Ford 0.119 Washington 0.223 G.H.W. Bush 0.711
G.H.W. Bush 0.106 Hoover 0.117 Monroe 0.211 Ford 0.703
Pierce 0.104 Van Buren 0.114 Jefferson 0.204 Nixon 0.687
Garfield 0.104 Tyler 0.111 J. Adams 0.195 Eisenhower 0.680
Wilson 0.104 G. W. Bush 0.109 Jackson 0.194 Truman 0.675

ered easily (this overcomes something that has been considered a major
theoretical shortcoming of distributional semantic models).

• This can be done by reusing the VSA operations and demarcator vector
techniques introduced already: no special new mathematical operators
need to be used.

• The representation stays holistic throughout: we do not have to attach
any special semantics to particular dimensions.

Of course, the set-theoretic approach to representing structured tabular data,
and its instantiation in relational databases, is well-established and highly suc-
cessful: the goal of this new work is not to supplant such technologies, but
to explore alternatives that may support complementary and more contextual
features.

7 Previous and Related Work

Using spatial models for reasoning tasks is not a new idea: the explicit corre-
spondence between geometric inclusion and logical implication goes back at
least as far as Aristotle’s introduction to logic itself, with the definition:

That one term should be included in another as in a whole is the
same as for the other to be predicated of all of the first. (Prior Ana-
lytics, Book I, Ch. 1).

Recent years have seen a significant growth of new mathematical applications
and empirical successes in this area, of which Predication-based Semantic Anal-
ysis is just one.

The introduction of tensor products to conceptual modelling in artificial
intelligence is often ascribed to Smolensky (1990). The tensor product concept
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can be extended mathematically to products of any number of constituents, the
mathematical links with quantum models for cognition being perhaps most
thoroughly explored in the physics literature in the works of Aerts et al (Aerts
and Czachor, 2003; Aerts, 2009).

Within the cognitive science community, vector symbolic approaches to rea-
soning have been developed and evaluated for their ability to perform tasks
traditionally accomplished by discrete symbolic models, often motivated by
Fodor and Pylyshn’s critique concerning the limited ability of existing connec-
tionist models of cognition to address such issues (Fodor and Pylyshyn, 1988).
One prominent area of application concerns analogical reasoning (Plate, 1994,
2000; Kanerva et al, 2001; Eliasmith and Thagard, 2001). This work demon-
strates that analogical mapping can be accomplished by a VSA trained on a
small set of propositions that have been deliberately constructed to represent
a well-defined analogical reasoning problem. A further motivating argument
for this work has to do with the relative biological plausibility of distributed
representations, that do not require a one-to-one mapping between their rep-
resentational units and units of information such as discrete symbols. Further
support for this argument is provided by recent work by Crawford and his col-
leagues, who demonstrate that a VSA that encodes and retrieves propositions
can be implemented using a network of simulated neurones (Crawford et al,
2013). This work involved the encoding of a fairly large number of proposi-
tions, and is similar in this respect to our work with PSI, though the goals of
these endeavors are markedly different. Some of this work explores the bio-
logical plausibility of such networks as “simulated brains” (see e.g., Eliasmith
(2013)), and investigations in this area have become mature enough to progress
beyond purely informatics questions (such as “Does the system produce good
outputs?”) to physical questions (such as “Would such a system in a real brain
consume a reasonable amount of energy?”).

In computational linguistics, some of the most innovative recent works
have been in semantic composition, to the extent that ‘compositional distri-
butional semantics’ has become a recognized area of study in its own right.
This work was initially motivated by several long-time problems with classical
(in the sense of Boolean or set-theoretic) models for compositionality, such as
the natural observations that a tiger moth is not a tiger and a stone lion is not a
lion (Gärdenfors, 2000; Widdows, 2008). Partly to address the fact that adjec-
tives change their meaning depending on the noun being modified, Baroni and
Zamparelli (2010) developed the representation of nouns as vectors and adjec-
tives as matrices (equivalent to rank-2 tensors) that operate on nouns. This idea
is applied to more general syntactic binding operations by Socher et al (2012),
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who use a recursive neural network to learn an appropriate vector and ma-
trix to every node in a parse tree. Grefenstette and Sadrzadeh (2011) also use
matrices for composition of vectors, based on a general model for composition
of meaning using category theory, and Grefenstette (2013) has generalized this
approach to describe a full-blown predicate calculus using tensors. One fea-
ture of several of these works is the continued use of matrices and tensors: so
instead of projecting the n2 representation of a product-state back into n dimen-
sions using an operator such as convolution, some researchers rely on numer-
ical optimizations such sparse-matrix representations to maintain tractability
at larger scales. For more of the mathematical and linguistic basis for some of
these theories, see Coecke et al (2010) and Clark and Pulman (2007): for further
experiments on composition, explorations of the relationship with quantum
structures, see Blacoe and Lapata (2012) and Blacoe et al (2013).

Vector representations still have many mathematical properties that are well-
known in other applications whose use in computational linguistics and artifi-
cial intelligence is in its early stages. Examples of such developments include
the use of dual-spaces by Turney (2012) and lattices by Widdows (2004, Ch.
8), and Clarke (2012). In general, the mathematical sophistication and experi-
mental successes of compositional distributional semantics have been making
considerable strides over the past decade, sometimes hand-in-hand and some-
times independently, and we expect developments in this field to keep acceler-
ating over the next few years.

7.1 Summary of Previous Results using PSI

In this section we provide a brief summary of results achieved using PSI over
the past five years. The bullet points below provide key results only, and we en-
courage the interested reader to refer to the source material for a more detailed
description of these and other related findings. The list is provided roughly
in the sequence in which these results were obtained. As such it generally
demonstrates a progression from the foundational to the applied. Earlier work
established with the capacity of PSI to retrieve encoded information, explored
the application of quantum logical operators in PSI space, and established a ba-
sis for large-scale analogical reasoning experiments. Recent work has applied
these capabilities predict helpful and harmful effects of drugs.

• Predication-based Semantic Indexing was first implemented using real
vectors and with permutation of coordinates used to encode predicate
type. It was trained on a set of over ten million semantic predications
extracted by SemRep, and tested by comparing the retrieved predica-
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tions for 1000 concepts with those in the original set. When evaluated
for its ability to recover these predications, the PSI system achieved best
results of 99.7% precision and 65.8% recall at 1500 dimensions (Cohen
et al, 2009).

• This work was extended to chains of reasoning over several predications,
recovering 2-step conclusions from 1000 pairs of linked predications as
premises, with 95.9% precision (Cohen et al, 2010c). Orthogonal negation
was also used to obtain new middle-terms in such pathways, resulting in
new reasoning pathways being found in 94.1% of cases, maintaining a
precision of 92.3%.

• Along with other distributional models, the initial implementation of PSI
was embedded in a system called EpiphaNet, providing biomedical sci-
entists with the means to explore the relations between concepts for re-
search purposes Cohen et al (2010b); Schvaneveldt et al (2013). Qualita-
tive evaluation of the use of the system by biomedical domain experts re-
vealed frequent discovery of surprising yet informative associations be-
tween concepts within their domain of expertise, as one might anticipate
given the breadth of literature upon which the models concerned were
trained.

• PSI for analogical reasoning with binary vectors was implemented fol-
lowing an example from Kanerva (2010). This permitted analogical re-
trieval (of the form A is to B as C is to ?), with precision over 60% with
an individual cue, and in the high 90%’s if many cues are superposed
(Cohen et al, 2011). This supports the claim that analogy works best with
‘entangled’ concepts, where entangled is used to mean ‘a compound ob-
ject that cannot be factored into a single pair of elements’, as in quantum
mechanics.

• Reasoning paths of using a variety of different relation types can be in-
ferred by analogy from known examples, and combined to recover held-
out sets of therapeutic relations (Cohen et al, 2012a,b,c). For both com-
plex and binary vectors, this work also demonstrated gains when using
quantum disjunction (subspace) over superposition for combining sev-
eral near-orthogonal reasoning pathways. In addition, superposing vec-
tors to extend the search over longer (triple-predicate) pathways further
improved performance.

• Similarly, reasoning pathways indicating adverse effects of drugs can be
inferred from known examples and used to recover held-out side-effects.
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Predications populating these reasoning pathways can be linked back to
the literature from which they were extracted, revealing plausible physi-
ological explanations for these effects (Shang et al, 2014).

• Most recently, therapeutic substances that may inhibit prostate cancer
growth have been predicted. Laboratory experiments have shown that
one-third of positive results are in the top 10% of the ranked predictions
(Cohen et al, 2014).

8 Conclusion

What we have discovered in recent years is that continuous models can address
some of the gaps between formal deductive reasoning and human-like intelli-
gent inference. This is primarily because continuous models can support the
notion of ‘near enough’ in such a way that we can analyse several reasoning path-
ways simultaneously and generate likely hypotheses of relationships between
concepts: not in the way humans do when we write a mathematical proof;
but more akin to the way humans, including domain-experts, have hypotheses
or hunches that may progress from vague associations to confirmed pieces of
knowledge when put to the test.

Predication-based Semantic Indexing or PSI is one of the successful mod-
els that has been developed in this area. PSI represents the concepts and re-
lationships from a knowledge-base in such a way that new relationships can
be inferred, not just by following individual chains of predications, but also
by examining many reinforcing pieces of information simultaneously, using
superposition and quantum disjunction. PSI has so far been applied partic-
ularly to biomedical informatics challenges such as predicting TREATS rela-
tionships for drug discovery and drug repurposing: however, the mathemati-
cal models are more general than these particular examples, and several other
researchers have applied related techniques to other concept-representation,
composition, and inference challenges, with increasing and notable successes.
As well as achieving good semantic performance, the computational perfor-
mance of these methods is typically very favorable when compared with tra-
ditional logic programming.

Some well-known challenges remain, including representing and inferring
the semantic type of an object (such as DISEASE or COUNTRY), and (some-
what surprisingly) using continuous models to represent continuous as well
as discrete concepts. As demonstrated in this paper, these topics can be ad-
dressed and these problems can be solved in vector models. We expect that

36



at least some of these initial successes will take root firmly in computational
linguistics and informatics more generally. For many researchers and practi-
tioners, the accustomed gulf between symbolic and distributional, rule-based
and statistical, rationalist and empiricist methods is quickly disappearing, to
be replaced by the much more interesting challenge of making these methods
work together to produce systems that can apply human-like sophistication to
bodies of information far beyond the individual human scale.
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Figure 3: Distributions of cosine similarities between randomly-chosen vectors
in low dimensions

A Appendix: Mathematical Explanation of Similar-
ity Distributions in High Dimensions

This appendix explains the mathematics behind the distributions of similarities
between random vectors shown in Figure 1 from Section 3, and why these are
so different from the distributions that we experience intuitively in one, two,
and three dimensions.

In one dimension, the unit vectors are just the set {−1, 1} and the cosine
similarities available are exactly plus and minus one, which mirrors the situ-
ation in traditional two-valued logic. In two dimensions, the unit vectors fall
on the unit circle, and the cosine of the angle between two randomly-chosen
vectors follows the arcsin distribution, which is concentrated towards the ex-
tremes. In three dimensions, the unit vectors fall on the standard unit sphere,
and the extra concentration of cosine values ‘near the poles’ is exactly cancelled
out by the larger size of the parallels ‘near the equator’, and the distribution of
angles between randomly-chosen angles is uniform. In four dimensions, the
distribution starts to prefer the middle-region near the equator. These distri-
butions are shown in Figure 3, which should be contrasted with Figure 1.

The key mathematical simplification that leads to these distributions comes
from noting that without loss of generality, we can use symmetry of the unit
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sphere in any dimension to fix one of the vectors to (1, 0, . . . , 0), and then the
cosine similarity of this vector for any other unit vector (x1, ..., xn) is simply
x1. It follows that the distribution of cosine similarities of pairs of unit vectors
is the same as the distribution of any chosen coordinate xi in the unit sphere
Sn−1 = {(x1, ..., xn) ∈ Rn|

∑n
i=1 x

2
i = 1}.

Geometrically speaking, for any fixed x1 ∈ [−1, 1], the locus of points in
Sn−1 with the first-coordinate x1 is a lower-dimensional sphere, given by the
constraint

∑n
i=2 x

2
i = 1−x21, which describes a sphere isomorphic to Sn−2 with

radius
√

1− x21, as shown in Figure 4. The surface area of this sphere is propor-
tional to the (n−2)th power of its radius (modulo constants involving π and the
total number of dimensions), so for each cosine similarity x, the size of the set
of unit vectors with this similarity score is proportional to (1− x2)

n−2
2 . Finally

we adjust for the fact that cosine similarity values closer to ±1 correspond to
proportionally more angles, by a similar factor of 1√

1−x2
(the arcsin distribu-

tion which we already saw is the dominant factor in 2 dimensions). Thus the
distribution of similarity scores between randomly-chosen unit vectors in Rn

is proportional to (1− x2)
n−3
2 . These curves are depicted in Figures 3 and 1.

These curves are shown non-normalized for the sake of comparison: to rep-
resent them as probability distributions, they need to be normalized so that the
area under each curve is equal to 1, a general solution of which requires hyper-
geometric functions.

The mean and variance of the distribution in each dimension can be de-
duced using relatively elementary methods. Making continued use of the sim-
plification that the distribution of similarities is the same as the distribution of
the first coordinate x1, it follows that the mean similarity is zero in each dimen-
sion, because each coordinate on the unit sphere is distributed symmetrically.
The variance of the distribution is therefore given by E[x21], the expected value
of the square of the first coordinate. Since all the xi have the same distribution,

E(x21) =
1

n

∑
E[x2i ] =

1

n
E
[∑

x2i

]
=

1

n
,

since for unit vectors,
∑
x2i = 1.

Thus the distribution of cosine similarity scores between randomly-chosen
unit vectors in Rn has a mean of 0 and a standard deviation of 1√

n
.
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1

1 − 𝑥2

Figure 4: The set of points on the unit sphere S2 with first coordinate equal to
x is a circle (isomorphic to the sphere S1) with radius

√
1− x2.

46


	Introduction
	Vector Models for Search, and their Logical Connectives
	Logical Operators in Vector Space Models

	Special Features of High Dimensional Vector Spaces
	Vector Symbolic Architectures
	Real Vectors
	Complex Vectors
	Binary Vectors
	Summary and Implementation Details

	Predication-based Semantic Indexing
	PSI fundamentals
	PSI Examples Using SemMedDB
	Analogical Inference with PSI

	Applications of VSAs and PSI
	Discovering Discovery Patterns
	Negation in PSI Models
	Semantic Types
	Representing Orthography
	Tabular Data and Continuous Quantities

	Previous and Related Work
	Summary of Previous Results using PSI

	Conclusion
	Funding
	Acknowledgments
	Appendix: Mathematical Explanation of Similarity Distributions in High Dimensions

