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Abstract. This paper describes a pervasive, scalable, and extensible
design for distributed information objects. The system is designed so
that all information has persistent identity, independently of the devices
used to store and transmit information.
The system relies on the notion of a u-form, which is a bundle of attribute-
value pairs indexed by a universal identifier. The Universal Unique Iden-
tifiers (UUID’s) in our system are more ubiquitous than the typical uses
of the URI or URN references of the World Wide Web, since even mun-
dane objects are given UUID’s that are guaranteed to be unique, even
if they have no fixed location and are not objects in any other managed
namespace.
UUID’s allow u-forms to refer directly to one another, irrespective of
their source or physical location, enabling the construction of a global
semantic network. Requests for replicates of u-forms are managed by
artificial agents called shepherds, whose goal is to promote consistency
across multiple repository venues in a peer-to-peer network.
U-forms are not bound by any one schema and new attribute-value pairs
can be added as appropriate. Schemata can be layered onto u-forms by
adding relations to role u-forms, which state the intended interpretation
of the attributes. The system is mature and has been deployed in a
number of governmental, environmental, geospatial and human-services
projects, some of which are presented as case studies.

1 Introduction

Over recent decades, it has become increasingly clear that, in order to build a
machine that demonstrates useful and broad intelligence, access to a rich and
varied yet coherent supply of facts about the real world is as vital as a robust
reasoning capacity. However, the available knowledge representations suffer from
being highly specialized, inextensible, or too shallow and unstructured. This pa-
per describes both the abstract and physical components of a Universal Database
architecture for knowledge representation, which we believe is a natural and sim-
ple foundation for solving this problem.

The representation is derived from both abstract and practical considera-
tions, and is designed to be comprehensive, flexible, distributed and evolving. It



is based upon the concept of the u-form, an abstract datatype that consists of a
unique identifier and a bundle of attribute-value pairs. A u-form is by definition
extensible and does not have to conform to any fixed schema; however, meta-
data or roles can be included in u-forms that express the way the attributes and
values are to be interpreted. The u-form is an abstract data-object, though to
build any real system it must have a physical representation. This is provided by
a network of data repositories, which pass u-forms to one another through a pro-
cess of shepherding. The architecture is mature and has been used in a number of
government, private research, community information, and commercial projects,
and its goal is to provide a fully interoperable store of public knowledge called
the Information Commons.

The sections in this paper discuss the properties necessary for a universal
knowledge representation system (using a variety of current examples as motiva-
tion), the u-form datatype and its deployment in a large peer-to-peer network,
metadata schema or roles which may be layered onto u-forms to enable their
correct interpretation, and finally, examples that demonstrate the usefulness of
persistent data identity and extensibility in a large data-modeling and navigation
project.

2 Requirements for Universal Knowledge Representation

This section describes some of the properties that a truly global knowledge base
would need in order to be successful. Our goal is not to build a single system
that provides input data for a single artificial intelligence application, but to
create the infrastructure for a system that can represent the knowledge required
by any artificial intelligent agent in the future, and (this is crucial) encourage
an information culture where this representation is readily available.

Object Extensibility One of the key ways humans acquire world-knowledge
is by gradually discovering more information about individual objects or groups
of objects. It is thus vital to be able to add information to the knowledge rep-
resentation of a single object, without necessarily adding attributes or variables
to all cognate objects. This is one of the key benefits of extensible formats like
SGML and its descendant XML, in which new tags can be introduced at any
time to represent new kinds of information. This is extremely difficult in tradi-
tional relational databases or ontologies, where schemata have to be decided in
advance and are costly to re-engineer.

Data Liquidity Any universal database must be vastly distributed, both in
space and across many diverse devices. This stipulation implies the need for a
high level of data liquidity, that is, the ability for data to flow readily from venue
to venue. Currently, the World Wide Web is the closest example of such a sys-
tem, though for some devices the currency unit of a Webpage is too large and
nonspecific (for example, a handheld device should not give you a list of subway
stations; it should tell you how to find the nearest one). Also, each webpage is
tightly coupled with the server that delivers it — data objects have no way of



moving between locations without losing their intrinsic identity. This problem
is still present with the Universal Resource Indicators (URI) described in the
Semantic Web literature [1]. Information contained in a URI cannot be author-
itatively replicated in a different location because the identity is the location.
For the same reason, you cannot publish data to the World Wide Web without
declaring where you want to store it, which prevents the system from taking
advantage of the ever-growing number of mobile devices that (in the current
paradigm) are often consumers but rarely providers of information.

Scalability This is a sine qua non of any universal system, and is closely related
to Liquidity. As well as being architecturally scalable in the large, the represen-
tation of a single object must itself be scalable, without conflicting with the
requirement for extensibility. This is a significant problem for XML, where it
is all too easy for greater richness of information to impede its dissemination.
For example, in the MUCHMORE project (a significant interdisciplinary effort
to use Multilingual Concept Hierarchies for Medical Organisation and Retrieval,
see Volk et al. [2]), a large knowledge base was used to annotate documents
with syntactic information, phrasal chunks, medical terms from the UMLS in-
terlingua,1 and semantic relations between these medical terms. Such a system
contains enough information in XML for the system to behave intelligently in a
very challenging domain, but in the process, the length of each document in the
corpus is multiplied several-fold, imposing a bottleneck for many devices with
less bandwidth whose users do not need to access all of this information.

This is a widely recognized limitation of XML and other linear text-based for-
mats, which were originally conceived as serialization formats rather than imple-
mentations. The annotation necessary to put a even small amount of RDF/XML
markup on a page often dramatically increases its size [1, Example 3].

Universal Identity and Reference One important way to improve scalability
is to refer to information by using relations or pointers. For this to work, it is vital
for one information object to be able to refer to others. This is the mechanism
by which knowledge bases such as Cyc [3] and WordNet [4] make the transition
from being ad hoc lists of information to being semantic networks.

This is the lifeblood of relational databases, though in relational tables iden-
tity is not universal, but scoped only to a particular table. For one data object
to cite another, it must be able to refer directly to a table and penetrate its
local namespace. To solve this problem in the large, we need a single universal
identity, not for each data-table, nor for each object within a data-table, but
for each information object to which another object might refer. The URL/URI
system tries to solve this problem, though as described above, the binding of the
identity to a particular device restricts data liquidity.

Widespread Collaborative Construction The ease of publication to the
World Wide Web has enabled millions of authors to write documents in elec-
tronic form, and include some notion of universal identity and reference. The
problem with the Web as a knowledge representation system is of course its lack
1 Unified Medical Language System, http://www.nlm.nih.gov/research/umls/



of structure other than links and formatting guidelines, which is one of the rea-
sons that the step to the Semantic Web requires such an enormous annotation
effort [5]. The Web stands in great contrast to most “knowledge representations.”
To produce a universal database of world knowledge, millions of users will need
to collaborate, but this is very difficult to orchestrate while ensuring that some
vital datasets have reliable and authoritative structure and content.

Layered Semantics One way (and as far as we can see, the only way) to enable
authoritative knowledge representation to grow from any system with widespread
contributions from voluntary authors is to ensure a careful system of semantic
layering. The information architecture should allow all sorts of information to be
entered, in such a way that it is automatically possible for any device in the sys-
tem to replicate and refer to this information. Complex metadata requirements
should not stand in the way of publication: instead, the adoption of metadata
standards should be encouraged by the availability of indexing and visualization
tools that make the creation of well-structured data worthwhile.

3 The U-form: A Universal Data Container

By studying the strengths and weaknesses of systems including those described
in the previous section, we have designed and widely implemented an architec-
ture for knowledge representation. This combines the important considerations
outlined in the previous section, as far as this is possible. The basic abstraction of
the system is an abstract data type called the u-form. A u-form is simply a bun-
dle of name-value pairs associated with a universally-unique identifier (UUID).
A u-form may be conceptualized as follows:

< UUID >:

attribute name 1 value 1
attribute name 2 value 2
. . . . . .
attribute name n value n

U-forms have the following properties:

– UUID is a sequence of bytes that, within acceptable engineering tolerances,
is assumed to be unique in the Universe.

– In addition to the UUID, a u-form comprises a set of attribute name/value
pairs.

– Each attribute name/value pair forms a 2-tuple comprising a single attribute
name and a single value.

– Each attribute name is a text string of arbitrary length. It must be unique
within the u-form.

– Each value is a sequence of bytes of arbitrary length.



∼ 013a64ab30588c11d6b09a4cf30b756185

name Pittsburgh

country US

state Pennsylvania

latitude 40.44

longitude -79.996

Table 1. Simple u-form representing the city of Pittsburgh, showing the UUID and a
few attributes and values.

The above is the entirety of the definition of the u-form datatype. A basic
example of u-form may be the representation of the city of Pittsburgh given in
Table 1.

The idea of collecting sets of attributes and values into distinct bundles rep-
resenting particular objects is due to Dertouzos [6], who proposed this architec-
ture for an “electronic form” or e-form that computers would use as a universal
means of communication. Our only innovation on this structure is the addition
of the UUID, which supports the need for persistent identity and reference of
information objects. Adding this unique reference to an e-form gave the name
u-form.

A u-form in our architecture a generic data container. That is, it is the sim-
plest unit of information that can be modified or extended without changing its
identity. In this regard, it plays a role similar to that of a variable in traditional
programming languages or of an object in object-oriented programming. Unlike
these, however, the u-form is a purely declarative data type: it exists entirely in
information space. Variables and objects, on the other hand, are not products of
information architecture, but rather of system architecture. That is, their fun-
damental nature is defined in terms of some specific programming environment.
An object may be serialized (i.e., described as data) into some external format
such as XML. But such a serialization is not itself an object, merely a descrip-
tion of one. Objects as such can exist only in the context of a running computer
program. U-forms, on the other hand, are (like integers, XML, or relational ta-
bles) essentially data. They are message, not medium. Unlike integers or XML,
however, each u-form has an intrinsic identity that remains the same even if the
contents of the u-form are modified.

It is because of this invariance of identity that u-forms are able to play the
role of generic data containers. This enables a u-form to potentially make the
journey from being an initial ad hoc data import to being part of an authoritative
knowledge base with accepted metadata standards. The cost of entry to the
universal database is thus made very low, but this places no ceiling on the
eventual quality of the knowledge representation.



3.1 Managing the UUID space

Users and readers who are new to u-forms are often perturbed by a problem that
is actually very easy to solve: how do you create a globally unique namespace?
Aren’t UUID’s very hard to manage, and isn’t the system going to run out
of UUID’s at some point? New users are often loathe to experiment with data-
structures that use a lot of u-forms, under the impression that UUID’s are scarce,
and that the more u-forms there are, the harder it will be to guarantee that
UUID’s are never accidentally duplicated.

We shall briefly consider this problem from first principles, and attempt
to demonstrate that the supposed difficulties are of a historical rather than
a theoretical nature, stemming from a confusion between the abstract idea of
a global namespace, and the physical devices that have been created over the
years to operate in this namespace.

The most certain way to create an unambiguous identifier for every distinct
object in any universe of discourse is to count the objects, and assign each object
a number. Clearly, nobody believes that we are ever likely to run out of numbers,
so any problems with using numbers as a namespace must be practical rather
than abstract..

From the earliest historical records (e.g. cuneiform inscriptions, [7, Ch. 3]), it
is clear that civil servants and record keepers have used numbers not just as ob-
jects for measuring and comparing sizes, but also for identifying concepts. This is
perhaps most obvious with the sophisticated calendaring systems of civilizations
such as the Egyptians and the Mayans, who recognized early on the benefits
to historiography of having a single namespace for dating events, rather than
a namespace specific to the reign of a particular ruler. It has taken many mil-
lenia for the principle of a global namespace for denoting instants of time to be
adopted, though this namespace is by now largely agreed upon and implemented
(see e.g. [8]).

Other examples of the historic use of numbers for both counting, measuring
magnitudes, and providing an unambiguous namespace, are described by [9,
Ch 1]. One of the simplest things to realize is that numbers have always been
used very ambiguously, in the sense that they mean different things in different
contexts. “Table 12” in one restaurant is always a different table from “Table
12” in any other, and “House number 9” on one street is always different from
“House number 9” on any other. This ambiguity is licensed by a conventional
agreement between language users, fixing the scope of context within which the
number is a unique identifier.

As long-distance communication has become possible, such simple local con-
ventions have been supplemented by attempts to secure interoperability. One
way to do this is by prefixing numbers in a namespace with a unique number
to refer to that whole namespace. This process can be repeated indefinitely, one
of the most everyday examples being the way a long-distance code is prefixed
to a local telephone number to make it national, and an international code is
prefixed to this local number to make it worldwide. Such a method constructs
a hierarchy of namespaces, in which the potential ambiguity of any number can



be resolved by considering its chain of inheritance in the hierarchy. This process
also occurs in language, without the use of numbers (for example, a speaker
could easily say “Toledo, Ohio” to distinguish this city from “Toledo, Spain” or
any other city with the name “Toledo”). Such a hierarchy can also be extended
downward to more specific cases. For example, once a company owns a specific
telephone number, they can make that the number of a central switchboard and
issue extensions that now uniquely refer to telephones on individual desks.

It is possible, in theory, to create a global namespace using such a com-
bination of local uniqueness and a tree of identities, so that any agent that
understands the path down through the tree can understand the identity of
the information objects at the leaves of the tree. We will call this management
strategy the hierarchical approach. The most significant implementation of the
hierarchical approach (for the purposes of this paper) is the Universal Resource
Name2 framework designed by the IETF (Internet Engineering Task Force).

It is instructive to consider some of the assumptions underlying such a hierar-
chical approach to managing a global namespace. The IETF document outlining
best practice for assigning URN’s to information resources [10]3 states the fol-
lowing assumptions:

– Assumption #1: Assignment of a URN is a managed process.

I.e., not all strings that conform to URN syntax are necessarily valid URNs.
A URN is assigned according to the rules of a particular namespace (in terms
of syntax, semantics, and process).

– Assumption #2: The space of URN namespaces is managed.

I.e., not all syntactically correct URN namespaces (per the URN syntax defini-
tion) are valid URN namespaces. A URN namespace must have a recognized
definition in order to be valid.

This places stringent restrictions on obtaining a universal identifier within the
URN framework: not only syntactic requirements, but procedural and semantic
conditions must be met. For certain namespaces, the authority conferred by such
a process is a necessary part of maintaining standards, and for this reason, the
URN framework is an ideal root pathway for subsuming mature standards such
as the ISSN (International Standard Serial Number) and ISBN (International
Standard Book Number) systems.

However, providing a universal namespace for objects that are already ap-
proved, edited, and published does not confer the full benefits of a genuinely
universal database. Producing a final, bound copy of a book is a long process
that requires all sorts of information management along the way: developing
many versions of files, including some files in others, merging edits of the same
file carried out on different machines. This process would be greatly aided by
a universal identity for information objects: there is no engineering reason for
reserving the idea of universal identity for the finished book alone. Ideally, we

2 http://www.ietf.org/html.charters/urn-charter.html
3 http://www.ietf.org/rfc/rfc2611.txt



want to build a system that gives permanent identity to information as it is cre-
ated. The challenges involved in developing an information space for published
books and manufactured goods is largely solved, but the challenges involved in
creating an information architecture for users of pervasive computing technology
are not.

Suppose, for example, that I wish to create a personal address book applica-
tion. Many such applications have been built, and all modern mobile telephones
incorporate such software. However, many users will have had the experience of
getting a new mobile telephone and manually transferring their address book
from the old device to the new one. This is mitigated by having devices that can
easily be synchronized with personal computers, but this still involves some so-
phistication and diligence on the part of the user. It still leaves your information
locked in a few devices, which is an improvement on just the single device, but
still falls way short of the goal of having your information available wherever
you need it.

The best solution to this problem is to give the entries in your address univer-
sal identities, and to build information devices that use this identity namespace
to ensure interoperation (as advocated by [11]). For this to work, the publication
bar to the universal namespace must be kept as low as possible, while preserving
universal identity. This is where automatically generated UUID’s come into their
own.

One of the most successful schemes for generating such UUID’s on demand
is to concatenate the the current time (defined by a local system clock) with
the unique network address of the device generating the UUID. This system has
been used successfully by the Open Software Foundation’s (OSF) Distributed
Computing Environment, and later to give universal identity to COM object
on Microsoft Windows platforms. Such UUID’s are typically 16 bytes (128 bits)
long, enough to ensure that a machine can generate some 10 million UUID’s
per second, with time uniqueness guaranteed until 3400AD! It is important to
remember that this is only one working implementation: there will be no “year
3400 problem,” we may simply need to add a new byte to UUID’s at that time.
In the meantime, we should be sure never to build systems that can only cope
with UUID’s of a fixed length, just as we do not build web browsers that can
only cope with URL’s of a fixed length.

Thanks to a recent proposal by Leach, Mealling and Salz [12], it is likely that
the UUID namespace generated in this fashion will become a regular part of
the URN namespace.4 It is thus possible that the URN and UUID namespaces
will become combined, a step to enfranchise all information types that we would
applaud.

For these reasons, we believe that a universal namespace that includes the
best of hierarchical organization and generation-on-demand is not only possi-
ble, but already a reality. UUID’s in this namespace are not scarce, they are
plentiful: it is much easier to create a UUID for every e-mail message (and even
every toothbrush) than it is to create the e-mail messages (or the toothbrushes

4 http://www.ietf.org/internet-drafts/draft-mealling-uuid-urn-05.txt



in the first place). The key difference between such a namespace and the cur-
rent URL/URI identifiers is that a UUID refers not to a location but to pure
information.

4 The Network of U-forms

Universally identified information provides fresh opportunities and challenges
for building information systems. This section briefly describes some of these
topics, including relations and indexing in the abstract information space, and
repositories and shepherding in the physical device space.

4.1 Relations

Relations between u-forms are indispensable to the practical application of the
system. Simply, a relation is a u-form attribute value consisting of a sequence
of UUIDs.5 The relation is the basic mechanism by which u-forms may refer to
other u-forms. The notion of a relation is very similar to that of a pointer in stan-
dard programming languages, or a URI in the Semantic Web [1]. However, rather
than depending on the address of the storage location as the means of reference,
relations depend on UUIDs, and are thus completely location-independent. Re-
lations can refer to u-forms whose locations are unknown, provided there is a
suitable architecture for requesting and retrieving them.

For example, in the Pittsburgh u-form in Table 1, the country and state
attributes would not really be strings, they would be relations to other u-forms
representing the USA and the State of Pennsylvania respectively. A human-
readable encoding of the Pittsburgh u-form would look very much the same, but
instead of displaying just the country and state attributes, it would display
the name attributes of the targets of these relations. This technique is of course
widely used: for example, in WordNet, relationships are stored not between the
surface-forms of words, but between synsets that are represented internally by
unique identifiers or offsets [4]. The difference between the systems is that UUIDs
are not defined within any one dataset: they are universal.

Many different relations can be collected in a single u-form, and even a single
attribute of a u-form. For example, some u-forms are collections, and have a
members attribute whose value is a list of other UUIDs. In this way, the mechanics
of Boolean set theory is easily implemented.

The universal identity of a u-form therefore enables the database to express
all kinds of linked structures, from simple directed graphs, to taxonomies, to full
semantic networks. By judiciously combining numerical values, string values, and
relations, many formal structures such as vectors, lattices, graphs, and curvilin-
ear coordinates can easily be expressed in u-forms. This enables complex models
of real-world knowledge to be expressed and combined or “fused.” For example,

5 That an attribute of one concept may contain a relation to another concept is noted
explicitly by Aristotle, Categories, Ch. 7.



we have already combined the shapes of countries and their regions, extracted
their common coastlines to fuse with other geophysical features, and expressed a
detailed lattice of geopolitical features that extends from the country level right
down to individual municipalities, census blocks and even individual parcels of
land (for regions where this data is available). At this detailed level, parcels of
land can be cross-referenced to public transit information, also expressed in u-
forms, enabling a reasoning agent to analyze the data and work out the simplest
way for a human to travel from (for example) their home to a doctor’s appoint-
ment. The common currency of u-forms enables the reasoning agents performing
these tasks to follow design patterns that are extremely simple, compared with
most traditional artificial reasoning agents.

4.2 Distributed Indexing

A more advanced use of relations and collections is to provide distributed indexes
of u-forms. The details of our research in this area are complex and will be
described in a separate paper, but the broad overview is as follows.

Since all information is by nature distributed and universally identified, there
is no need for a central server or network to index all u-forms and serve all
queries, nor is this desirable, because of the inevitable time-lag that this involves.
The large internet search engines such as Google6 and Yahoo7 demonstrate this
shortcoming — they are excellent data-silos for persistently located information
on the World Wide Web, but as tools for enabling person-to-person information
sharing and collaboration between small local devices, such indexes are far too
slow to update.

Instead, since all information in our system is contained in distributed u-
forms, we have built indexing structures are distributed in exactly the same
fasion. On a simple level, a collection u-form behaves as a degenerate index: for
example, I could keep a collection of the UUID’s of all the u-forms of people in
my address book, and then this collection will be as persistently available as the
address-containing u-forms themselves.

To search for a particular person by name, it is possible to iterate through
this collection linearly until the correct name is found, but obviously this process
cannot be used for large datasets. In the case of large datasets, to build an
index of (for example) the name attribute from all the u-forms in a dataset,
we adopt structures similar to the indexes provided to large books such as the
Encyclopedia Britannica. In other words, the top level u-forms in the index might
consist of a collection of UUID’s along with annotation to say which segment
of the alphabet they provide an index to. These u-forms may recursively refer
to other u-forms that split the alphabet into more specific segments, and so on,
until the desired name is found. Many such search trees are a standard part of
computer science (see for example [13]). The research challenge lies in working
out which of these structures can be adapted properly to environments where

6 www.google.com
7 search.yahoo.com



the information objects are distributed, and hence may or may not be present
in your current venue.

Indexing of this sort can also be used to create indexes whose keys are
UUID’s, as well as just keyword strings. This is crucially important to distribut-
ing not only information but authority. For example, suppose that a user wishes
to place a comment on the u-form for Pittsburgh in Table 1, to say that it is a
beautiful (or an ugly) city. Such user opinions should not affect the u-form for
the city itself, however, since this is simply meant to contain factual information
about Pittsburgh. The solution is that the user’s comments should be placed
in separate u-forms that contain relations to the object that the comment is
intended to describe. Such comments can be found by means of a UUID index.
A particular user or group of users can even create a special index of “everything
said by this community about other u-forms,” thus forming a kind of “content
channel.”

In this way, universal identity enables information to be distributed with-
out losing its identity. It is not only the storage and the computation that is
distributed, it is also the authorship and authority.

4.3 Repository Venues, Replication and Shepherding

The universal database system has already been successfully deployed on behalf
of government, commercial, and non-profit organizations. The main underlying
component is a scalable persistent data store, existing both as an embeddable
component and as a network server, whose essential role is the storage, replica-
tion, and retrieval of u-forms. The external interface to such a repository server
is extremely simple. The basic operations consist of the following:

– GET ATTRIBUTE — Given a UUID and an attribute name, the repository
returns the previously stored value of that attribute.

– SET ATTRIBUTE — Given a UUID, an attribute name and a value, the
given attribute is set to the given value.

– LIST ATTRIBUTES — Given a UUID, the repository returns a list of at-
tributes that have values in the specified u-form.

Since the identity of the u-form (its UUID) refers directly to the information
object, not to its physical location, the u-form abstraction enables copies of u-
forms to exist simultaneously in many different repository venues. The act of
creating a new instance of a u-form in a different venue is called replication.
Replication is a great bonus for data liquidity, because it enables frequently
requested u-forms to exist in many locations near to where they are needed,
avoiding delays and heavy network traffic when making GET ATTRIBUTE
requests.

Of course, just because two replicates are defined to be the same does not
mean that they are the same. Indeed, it is impossible, even in principle, to
guarantee in general that two mutable data objects are identical at any given
time. The task of maintaining both the pervasive availability of u-forms, and



the constraint that any edit to a u-form should be replicated to every version
of that u-form as quickly as possible, is carried out by automatic agents called
shepherds. The shepherd’s job is to implement various business rules concerning
the appropriate replication policies to be applied to u-forms whose contents
are inconsistent across the venues. Currently the shepherding agents have some
degree of artificial intelligence — for example, they can detect and, in limited
situations, resolve conflicts that occur when two versions of the same u-form
contain different information.

The dual recognition that (a) one can use replication to approximate the
ideal of having the same data simultaneously accessible in multiple venues si-
multaneously but that, (b) any such approximation will inevitably be imperfect,
proves to be provocative: How can we make this approximation useful? What
exactly is it an approximation of? What compromises will nature force on us,
and how can we mitigate them?

In exploring these questions, we have built peer-to-peer networks in which all
traffic between venues is handled solely by shepherds. The goal of the shepherds
is to make the repository network converge as closely as possible to something
we call the GRIS Principle, which is the assumption that a replicated u-form
is the same in every venue. GRIS is a (facetiously named) project acronym for
the “Grand Repository In the Sky,” a persistent store of unbounded capacity
that is capable of providing instantaneous, transactionally consistent read/write
data access anywhere in the world. Though these capabilities are impossible to
ensure in practice, the question “How closely are we approximating GRIS?” has
proved its worth as a benchmark for comparing implementations.

The current repository network has been used in a number of contexts and is
robust both from a stability and a scalability perspective. Detailed performance
studies have been conducted and are available from the authors. There are many
other challenges in approaching the GRIS ideal, many having to do with such
services as efficient search, retrieving partial values of large attributes, and au-
thentication/security. This material has been the topic of much of our recent
research and will be reported in a separate paper.

5 Roles

We have already seen that, in contrast to relational tables, a u-form does not have
to follow any predefined schema when it is created, just as an XML document
does not have to have a predefined set of permissible tags. New attributes can
be added at will (this practically defines what it means for a data-object to be
extensible).

However, it is extremely important for attribute names to be chosen so that u-
forms can be interpreted according to the intentions of their creator. For example,
the Pittsburgh u-form in Table 1 uses the attributes latitude and longitude
which our mapping applications recognize these names as global coordinates. If
the creator of the u-form uses lat and long instead, a rendering agent that is
looking for latitude and longitude will not work.



There are at least two ways we could handle this situation:

– Introduce a definitive list of universal attribute names.
– Enable information about intended interpretation to be carried by individual

u-forms.

The first of these options, though simple and tempting in the short run, is
not future-proof and would make the management of the attribute space far too
critical and cumbersome.

Instead, we take the second option, encouraging the creation and use of
metadata-carrying u-forms called roles. A role is simply a u-form that asserts
that, if a particular attribute is present, the creator of the u-form intends that
the value of this attribute should be used in a particular way. To use a particular
role, a user simply adds a relation to this role’s u-form in its roles attribute.

For example, the real Pittsburgh u-form includes a relation to the Geopolitical
Entity Role in its list of roles. This role asserts that the value of the name attribute
should be a human-readable string, the value of the country attribute should be
a relation to the u-form representing the country in which the city is located, and
that the latitude and longitude attributes should be interpreted as curvilinear
coordinates describing a location on the planet Earth. Other attributes in this
role include the fips code issued by the US Federal Information Processing
System.

Latitude and longitude are in fact covered by a more general schema, the Role
for Geo-Reference using Global Coordinate System, and the Geopolitical Entity
Role inherits all of the attributes covered by this role. In this way, one role can
extend the namespace defined by another. Several other roles (e.g., those used
to describe natural rather than man-made geographic phenomena) also inherit
from the Role for Geo-Reference using Global Coordinate System, and a mapping
application that only knows about this general role can still correctly render a
u-form that plays any of these roles. At the top of this role-structure is a role
for Entity, which just describes the attribute’s name, label, and description
(label is used by interface devices with limited space — for example, the label
attribute of the u-form for Pennsylvania contains the abbreviation PA). All u-
forms that represent some object in the real world can have a meaningful name
and description, and thus every role played by real-world objects will almost
certainly inherit from the role Entity. (Inheritance is transitive, so this is not
necessarily a direct inheritance.)

5.1 Types of Roles

Most of the roles that are in wide current use can be grouped into three broad
categories:

– Phenomenal roles usually list the attributes used by u-forms representing
objects in the real world. At some level of inheritance, phenomenal roles
generally inherit from the role for Entity.



– Adjectival roles list further attributes that may extensibly be applied to
phenomenal u-forms. For example, many different kinds of objects have an
address or price, and these can be added to phenomenal u-forms without
having to add these attributes to each phenomenal role.

– Assertional roles list relationships between several phenomenal u-forms.
For example, a u-form playing the role Service Offering asserts that an orga-
nization is providing a service (a kind of activity) at a given venue between
certain hours.

There is an informal correspondence between phenomenal, adjectival, and
assertional roles and between nouns, adjectives, and verbs in natural language.
(Like parts of speech, the boundaries between the role categories are blurred in a
few instances.) The system of roles is partly influenced by the idea of case roles
and case grammar, developed by Fillmore [14] as a semantically robust alter-
native to the idea that syntactic parsing must precede semantic interpretation.
In the same way, a u-form may often omit some of the attributes defined by its
roles, and an artificial agent will still be able to proceed intelligently with par-
tial information. For example, a geo-political entity with no country attribute
can still be entered into a spatial index and rendered on a map using just its
latitude and longitude.

5.2 The Difference Between Roles and Ontologies

Because of the structure of inheritance and the human-readable choices of role
and attribute names, it is tempting to think of the role system as a kind of
ontology. It is important to remember that this is not the case. All roles do
is ensure that the creator of a u-form and its eventual user have an agreed
vocabulary for attribute names. This enables roles to be reused without making
ontological claims, but merely to facilitate interpretation.

This lack of ontological claim has an important corollary: a u-form may of-
ten have more than one schema, which is accomplished by relating the u-form to
more than one role. Although these roles may not syntactically contradict each
other by assigning conflicting meanings to the same attribute name, the various
roles that a u-form plays may be quite distinct. These roles may complement or
elaborate upon each other (such as adding an annotation role to a u-form repre-
senting a text document); they may be independent of each other; or they may
even semantically contradict each other. The ability to add unanticipated roles
to existing u-forms is a prime source of extensibility and introspection within
the architecture. It becomes possible to write applications that can process data
objects that they only partially understand, even to the point of modifying those
objects without risk of compromising other applications’ continued ability to in-
terpret and modify other attributes of the u-form. The ultimate effect of this is
that roles can be applied and even defined at retrieval time, rather than when
the database is created. The importance of this fact in enabling the creation
of evolvable systems is difficult to overstate. U-forms can systematically take



on new roles, and therefore constitute possibly the first ever knowledge repre-
sentation system to embrace the systematic ambiguity that is now known to
be responsible for the reuse of word-forms in natural language, as described by
Generative Lexicon theory [15].

Finally, it should be noted that the definition and use of u-forms are not
necessarily dependent upon the use of roles, just as it is not necessarily de-
pendent on our implementation using repositories and shepherding. While roles
have provided invaluable metadata for interpreting u-forms, they are at a higher
semantic layer than the construction of the u-form datatype. Because of this se-
mantic layering, it would be quite possible for a new user to enter the Information
Commons and use a completely different system for negotiating metadata, and
because of the careful semantic layering of the knowledge representation system,
all of the data we have already imported and fused could still be of great use
to them. The persistent identity conveyed by the UUID will still enable all of
the work in creating u-forms to be highly valuable even if grave flaws are later
discovered in the metadata schema. We believe that this evolvable design sig-
nals an important advance over the traditional uses of both relational tables and
ontologies.

6 Applications and Results

For such a large knowledge-engineering undertaking as this, the test of success
lies not only in its theoretical soundness, but in its usefulness in practice. To
this end, we have imported many different datasets to serve the needs of several
projects. These include geographical, demographic, environmental, and literary
information sources, and the current network of repositories (including for profit,
non-profit and educational users) contains over 300 million u-forms. Millions
of these u-forms are fused together in a coherent model of the real world in
information space. The value of having a common currency for information,
and common metadata to guide its interpretation, becomes much clearer when
dealing with such large quantities of data: for example, the same mapping tools
can be used to zoom in on and visualize far more types of data than is possible
with conventional GIS systems. This world-modeling effort will be described in
full in another paper: here we will describe a regional collaborative project that
gives a snapshot of the power of the universal database concept.

6.1 Allegheny County Human Services Project

Allegheny County in Western Pennsylvania (which includes the Pittsburgh
metropolitan area) has thousands of providers of human services, ranging from
adoption counseling to rehabilitation clinics to Boy Scout troops. Two major
organizations, the Allegheny County Department of Human Services (DHS)8

and United Way of Allegheny County (UWAC),9 both maintain large relational
8 http://www.county.allegheny.pa.us/dhs/
9 http://www.uwac.org/



databases of organizations, facilities, and services provided in the region. In order
to integrate these previously incompatible information sources, a project was un-
dertaken by Three Rivers Connect (3RC),10 a Pittsburgh non-profit foundation,
to represent these datasets using u-forms in the Information Commons.

Initially, there was considerable skepticism from the two main data providers,
both of whom felt that their data could only suffer from being included in any
other information system, since their databases were carefully designed to con-
tain information specific to their needs. This is a very typical stance, since many
data providers have invested much time and expertise in their systems, and have
good reason to fear tampering. The project gradually calmed these fears and
produced a common solution, taking the following steps:

– General roles for Facility, Organization and Service Offering were defined.
Between these roles and other linked concepts such as Activity and Munic-
ipality, most of the important data from both databases could be faithfully
represented.

– Using the extensibility of u-forms and the inheritance structure between
roles, the remaining attributes (such as DHS- and UWAC- specific codes
for different services and organizations) could be easily accommodated by
introducing more specific roles that inherit from the basic Service Offering
and Organization roles.

– The common architecture now enabled data fusion of items that were in both
databases — for example, two facilities with the same name and very similar
latitudes and longitudes would be amalgamated into the same u-form.

– The contributors began to see unexpected advantages from this process —
for example, they could be alerted when the telephone attribute of an or-
ganization differed from the version in their database, and they began to
request lists of these differences so they could update their original data
where necessary.

These points exhibit many of the benefits of the universal database concept.
Because there is a single extensible u-form representing a real-world object,
information accrues to this u-form, enabling all users to see the most definitive,
up-to-date information. Similarly, the system of roles encourages attribute names
to be chosen from a common, but evolving, vocabulary that can expand at will
to include more specific attributes from individual datasets.

Interfaces were built that enable a health professional to explore the datasets,
navigating by geographic region, names of programs, organizations, and facilities,
and via the United Way taxonomy of service offerings. This information can
then be viewed in a number of ways that emphasize different aspects of the
data, ranging from an in-depth analysis of which services are provided by which
organizations at specific facilities (see Figure 1), to a map view that is fused with
public transportation data so that the person being referred can easily plan a
trip to the facility in question. This interface is currently available to regional

10 http://www.3rc.org/



Fig. 1. A view of a u-form mediated by the facility role. The images and text in this
interface are all attributes of u-forms; the existence of an information-centric interface
encourages users of the system to reuse the same roles and attribute names, so that
their information will appear in a predictable part of the encoder.

health professionals, and will shortly be released to the public over the Internet.
A demonstration will be given in our presentation.

7 Conclusion

We have described a universal data architecture based upon the concept of a u-
form, a data container whose contents corresponds to a real-world object rather
than an architecturally confined data-table. The persistent universal identity
of this data-object enables other u-forms to unambiguously refer to this object
from any location, so that data can be structured into semantic networks and
fused into definitive versions using the role system to describe extensible meta-
data schema. The information architecture is supported by a mature peer-to-
peer network of repositories, and has been used in large-scale projects. We have
demonstrated that the data architecture can satisfy the scalable needs of knowl-
edge representation, from simple (though pervasive) hypertext applications to a
complex domain requiring the fusion of demographic, geographic, transportation
and health information.
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