Real, Complex, and Binary Semantic Vectors

Dominic Widdows!, Trevor Cohen?, and Lance De Vine?

! Microsoft Bing
2 University of Texas School of Biomedical Informatics at Houston
3 Queensland University of Technology

Abstract. This paper presents a combined structure for using real, com-
plex, and binary valued vectors for semantic representation. The theory,
implementation, and application of this structure are all significant.
For the theory underlying quantum interaction, it is important to de-
velop a core set of mathematical operators that describe systems of in-
formation, just as core mathematical operators in quantum mechanics
are used to describe the behavior of physical systems. The system de-
scribed in this paper enables us to compare more traditional quantum
mechanical models (which use complex state vectors), alongside more
generalized quantum models that use real and binary vectors.

The implementation of such a system presents fundamental computa-
tional challenges. For large and sometimes sparse datasets, the demands
on time and space are different for real, complex, and binary vectors. To
accommodate these demands, the Semantic Vectors package has been
carefully adapted and can now switch between different number types
comparatively seamlessly.

This paper describes the key abstract operations in our semantic vector
models, and describes the implementations for real, complex, and bi-
nary vectors. We also discuss some of the key questions that arise in the
field of quantum interaction and informatics, explaining how the wide
availability of modelling options for different number fields will help to
investigate some of these questions.

1 Introduction

The contribution described in this paper is a learning and representation system
that enables vector models to be built easily using real, complex, or binary
numbers as coordinates for semantic vectors.

Quantum mechanics, statistical machine learning, and hyperdimensional com-
puting have used some notion of state-vector or feature-vector for decades. While
these and many other fields use common mathematical vector-space theories, in
practice they often differ in their choice of a ground-field, or basic number type.
That is, if a vector is a list of coordinates, what sort of numbers should the
coordinates be?

In quantum mechanics, and other areas of physics including electromag-
netism, complex numbers are indispensable. The Schrodinger equations and
Pauli matrices involve complex numbers explicitly, complex numbers are part



of the relationship between positions and momenta, and complex Hilbert spaces
are so normal that the logic of projections in Hilbert space is sometimes called
a Standard Logic [1 Ch 1].

Logical semantics and computer science, on the other hand, use mainly bi-
nary and set theoretic representations, stemming from George Boole’s innovation
of describing an Aristotelian predicate as a mapping from a set of objects to the
binary numbers [2]. Representations in information theory and modern comput-
ing assume an underlying quantized bit-vector, and in software engineering, a
‘real number’ is really a string of bits mediated by IEEE standards. Standard
logic in these fields is Boolean logic.

The growing community of practice in statistical machine learning uses real
vectors for most representations. Feature vectors are used to describe items to
be classified or ranked, and the features are most often measurable quantities
(such as the redness of a pixel in an image, or the weight of a particular term
in a given document). This makes the idea of using real numbers as features
intuitively practical, and with real numbers, standard statistical distributions
and techniques are so readily available that the use of real number coordinates
as features leaves little to be desired in many successful applications to date [3].

Today, the sciences of intelligence are part of this arena as well. Artificial
intelligence and computational linguistics have grown, and partly shifted from
an emphasis on binary and logical representations to real and statistical ones.
Psychological and cognitive applications of real vectors and their similarities in-
clude Prototype Theory [4], Pathfinder Networks [5], and the Conceptual Spaces
of Gardenfors [0]. Kanerva’s hyperdimensional computing [7] (and of course,
Boole’s Laws of Thought [§]) use binary representations to model cognitive pro-
cesses of learning, remembering, and reasoning. The use of complex numbers
to model cognitive processes is still apparently in its infancy (see for example
[910]), but we might well expect this area to grow as well.

Another rapidly growing area is the application of more sophisticated prod-
uct operations in semantic vector space models. For many decades, the main
operations used in vector space models were just vector addition for composi-
tion and the cosine or related measures for judging similarity. Though many
other operations are well-known in the theoretical literature (for summaries, see
e.g., [I1I12]), practical implementations have lagged behind, partly for compu-
tational reasons. This has changed dramatically over the past few years: several
operators have been used successfully in practice to model word-order dependen-
cies [I3T4] and operations such as verb-argument binding [I5/T6], adjective-noun
modification [I7], and formal ontological relationships [I8]. The old notion that
distributional semantics is a ‘bag-of-words’ methodology has been comprehen-
sively superseded, at least in the research literature.

The accelerated development of so many sciences and technologies has natu-
rally left many possible combinations of empirical challenges and mathematical
representations unexplored. That is (for example), there are many cognitive mod-
els or machine learning tasks to which complex or binary vector representations
have not been applied. Of course, if complex numbers, including their so-called



‘imaginary’ parts, turned out to be a key to modelling mental processes, we
might be surprised and skeptical: but perhaps no more surprised than we should
already be at the usefulness of imaginary numbers in electrical engineering.

Some strides have already been made in statistical learning using complex
numbers [I0] (with theory based on [9]), and with binary numbers [19] (with
theory based on [7]). The project undertaken by the authors, and reported in
this paper, is to unify these mathematical options in a system that makes it
possible to easily experiment with all three (and potentially more) standard
ground fields for vector representations. The system is implemented and released
in the Semantic Vectors package [20], an open-source package that can be freely
downloaded from the web at http://semanticvectors.googlecode.com. For
real, binary, and complex vectors, the package now supports training of term
and document based semantic models, and makes available a range of product
operators for learning similarity, directional, and logical relationships.

This paper is organized as follows. Section [2| describes the mathematical ab-
stractions supported in all representations. Sections [3] [4 and [f] describe the
specific operators and implementation decisions for real, complex, and binary
vectors respectively. Section [6] discusses the relationship with quantum interac-
tion in more detail. The models used in practice have some significant similarities
and differences with the ‘classical’ quantum mechanical model of complex Hilbert
space, and this can be used to shed fresh insight on the important question of
what generalizations are appropriate in generalized quantum structures. While
this section draws some points in conclusion, readers whose primary interest is
in quantum interaction and generalized quantum structures may consider read-
ing Section [f] first. Section [7] briefly refers to experiments conducted using the
system. These experiments are described in full in a separate paper.

2 Common Mathematical Operators

This section owes much to the theoretical framework of Kanerva’s hyperdimen-
sional computing [7], and the experimental implementation and notation used
n [19]. Some of the core concepts are from the literature on Vector Symbolic
Architectures (see [IT2I1T] and others). Please refer to these papers for detailed
motivation: due to space constraints, many of the more subtle points are not
discussed in this section.

The goal (as with much of abstract mathematics) is to define a core set of
operations that all semantic vector models should support, and rules surrounding
these operations. The most basic rules are listed in Table [2| To date, it is better
to think of these as rules of thumb, rather than formal axioms that described an
algebraic structure such as a group or lattice: such a hardened theory may arise
from this work in the future, but it is not yet here.

There are many key discussion points that make these vector systems func-
tionally appealing. In high dimensions, they are easy to build. Randomly allo-
cated elemental vectors are overwhelmingly likely to be unrelated (e.g., pseudo-
orthogonal), and large numbers of these elemental vectors can be created before


http://semanticvectors.googlecode.com

Table 1. The core mathematical operations performed on representation vectors

— Generate Random Vector. Creates a random vector that can be used to rep-
resent an elemental concept.

— Measure Overlap. Measures the similarity between two vectors A and B: a real
number, A - B, typically between 0 (no similarity) and 1 (exact match). Negative
values are possible. The overlap between two randomly generated elemental vectors
should be near to zero (or some other value that means ‘no significant overlap’ or
geometrically orthogonal).

— Superpose. Takes two vectors A and B and generates a third vector A + B, such
that A-(A+ B) and B - (A + B) are relatively large. Superposition is sometimes
called bundling in the literature.

e Superpositions can be weighted by any real (in practice, double-precision float-
ing point) number.

e This, and the presence of a zero vector, gives us the practical ability to perform
regular ‘scalar multiplication’, at least with real number scaling factors.

— Normalize Takes a vector A and rescales it to a vector A such that A- A = 1.

— Bind. Takes two vectors A and B and generates a third vector A ® B, such that
A-(A® B) and B - (A ® B) are usually near to zero.

— Release. Inverse of bind, written as A @ B. Should behave in such a way that
(Ao (A®B))-B=1.

there is any appreciable danger of confusing two vectors. It follows from this that
superposition is normally quite easy and natural to define (natural in the math-
ematical sense, that choosing an operator for measuring overlap makes some
particular choice of operator for superposition appealing).

Binding is different: given a choice of overlap measure, there are usually many
options for defining an appropriate binding operation. This leaves much freedom
for choosing options that are computationally appealing: as we will see in the
implementation sections, this is important for building tractable systems. Since
many binding operations are available, hybrid systems that use more than one
binding operation to represent different semantic combination operations are
quite likely to emerge.

Training a model — that is, the process of deriving semantically significant
representation vectors from elemental vectors and a training corpus — can then
be performed in linear time by taking linear combinations of elemental vectors.
Many details of available training processes are available in our earlier works, e.g.,
[20]. There are several more algorithmically sophisticated training techniques
available, including singular value decomposition (see [21] and related literature).

In practice, these core vector operations are declared by a Vector interface
and implemented by all vector types. Note that the use of an interface (as op-
posed to an abstract base class containing some shared implementation) means
that we are making no presuppositions about the physical representation of
vectors: in particular, we do not explicitly assume that vectors are lists of co-



ordinates. The implementations so far released in Semantic Vectors are indeed
coordinate-based, but coordinate-free representations are not unthinkable.

Other mathematical operations including orthogonalization are supported as
utility functions derived from the primitive operations. This allows represen-
tations to make use of quantum-logical connectives for search (see [22, Ch 8]).
Optimized linear-time search and k-nearest-neighbour ranking are implemented.
Each vector implementation is also required to implement common serialization
operations, for e.g., writing to long-term storage hardware. In practice, each
vector implementation comes with lightweight (often sparse) representations to
support large numbers of elemental vectors, and more costly representations for
dense semantic vectors.

This concludes our summary of the operations common to all vectors. We will
now proceed to describe the three implementations available so far, for vectors
using real, complex, and binary numbers as coordinates.

3 Real Vectors

The use of real vectors for representation in empirical learning is by far the
most common choice of ground-field to date. In the Semantic Vectors package,
real vectors are implemented using single-precision, 4-byte floating point num-
bers. Randomly-generated elemental vectors are sparse ternary vectors: ternary,
meaning that they use only values from the set {—1,0, 1}, and sparse, meaning
that most values are left as zero. Superposition is implemented using standard
component-wise vector addition, and overlap is measured using cosine similarity
[22, Ch 5).
For binding, options in the literature include:

— Superposition after permutation of coordinates (introduced by [14]). That
is, A® B is implemented by permuting the coordinates of B and then super-
posing with A. Since there are n! possible permutations, there are n! possible
binding operations. The availability of so many options has been used to give
different permutations based on the number of words between two terms [14],
and to represent different semantic relationships from a knowledge base [19].

— Convolution of vectors, as described in [9]. This was used to model word-
order relationships by [13].

Due to computational considerations, the operation used for binding real
vectors in the Semantic Vectors package is permutation of coordinates, though an
implementation of circular convolution using fast Fourier transforms is available
in codebase.

We note in passing that traditional Latent Semantic Analysis (that is, the
creation of a reduced term-document matrix using singular value decomposition
[21]) is only available for real vectors.



4 Complex Vectors

The use of complex numbers for semantic representation is discussed in [9] and
was first introduced to the Semantic Vectors package in [10]. The extra richness
over real representations comes largely from complex multiplication, which has
an angular or ‘turning’ effect. This has powerful consequences. For example,
since complex multiplication can effectively turn a vector through a right angle,
multiplication can turn a cosine similarity of 1 to a cosine similarity of 0. This
makes multiplication an effective candidate for the bind operation. The variety of
effective options available has encouraged us to implement two different modes
for complex vectors: a Cartesian mode where rectilinear options are used by
default, and a polar mode where circular operations are used. In more detail,
the operations for complex numbers implemented in Semantic Vectors are as
follows.

Random elemental vectors have coordinates that are either zero, or elements
of the unit circle group U(1) of complex numbers whose modulus is 1. This is
an apt generalization of elemental real ternary vectors, since the set {—1,1} is
the intersection of the circle group U(1) and the real line. Both sparse vectors
(mainly zeros) and dense vectors (all coordinates members of U(1)) have been
used in practice, and changing this is an easy command-line configuration. As an
optimization, a lookup table for sines and cosines of angles is created, and many
of the procedures involving complex number multiplication are implemented
using addition of keys in this table. Such a key is often called a phase angle.

In polar mode, entries remain confined to the unit circle, and normalization
is implemented by projecting each complex coordinate (that is, each pair of
real coordinates) to the corresponding angle on the unit circle. Of course, this
projection is undefined for zero entries. For this reason, we have introduced a
zero element in the angle lookup table, with the expected rule that the zero
element maps any other value to zero under multiplication.

The main operations in each mode are as follows:

— Measure Overlap

e In polar mode, normalized sum of differences between each pair of cor-
responding phase angles.

e In Cartesian mode, the cosine similarity of the corresponding real vec-
tors: in other words, the real part of the standard Hermitian scalar prod-
uct.

— Superposition.

e In polar mode, the weighted average of the corresponding phase angles.
This operation is not associative: angles added later in the process have
more significance.

e In Cartesian mode, standard complex vector addition.

— Normalization

e In polar mode, mapping each complex number to the corresponding

phase angle.



e In Cartesian mode, scaling each coordinate so that the sum of the squares
is equal to 1.
— Binding
e In polar mode, circular convolution. The key observation here is that,
because the representation is already in a phase angle form, it is in the
‘frequency domain’ and no Fourier transform is necessary for optimiza-
tion. Thus, circular convolution is simply the addition of phase angles
[QIIa).
e In Cartesian form, no such optimization is so naturally available, and
permutation of coordinates is used instead.
— Release naturally used the inverse of the corresponding bind operations.

Thus the system for complex semantic vectors has the option of treating a
complex number as essentially a rectilinear construct, or as essentially a circular
construct. These could be combined further by introducing a modulus repre-
sentation as well as the phase angle representation. We have not done this yet,
partly for computational performance reasons, and partly because the virtues of
the two representations are still actively under investigation, and we feel that
conflating them may be premature.

5 Binary Vectors

The binary vector representation utilized in Semantic Vectors follows the ap-
proach originated by Pentti Kanerva, known as the Binary Spatter Code (BSC)
[23]. The BSC depends upon hyperdimensional (d on the order of 10,000) bi-
nary vectors. As in our other representations, these can be categorized as el-
emental vectors and semantic vectors, where elemental vectors are randomly
constructed so as to be approximately orthogonal to one another, and semantic
vectors are generated by superposition of elemental vectors during the training
process. However, there are a number of important differences between this and
the other representations we have discussed up to this point.

Firstly, distance in the binary space is measured using the Hamming Dis-
tance (HD), a count of the number of bits that differ between two vectors (for
example, HD(1001,0111) = 3). Orthogonality is defined as a HD of half the di-
mensionality of the space [24] — a normalized HD of 0.5. This is in keeping with
the construction of elemental vectors, which are constructed by distributing an
equal number of 1’s and 0’s at random across the dimensionality of the space.
While these vectors are therefore not sparse in the sense of having mostly zero
values, the space is sparsely occupied in the sense that elemental vectors tend
to be far apart from one another. A set of elemental vectors constructed in this
manner will have a mean pairwise HD of %, with a standard deviation of @
As the pairwise distances are normally distributed, this implies that in a 10,000
dimensional space, we’d anticipate approximately 99.7 percent of elemental vec-
tors having a HD from one another of between 4700 and 5300. This sparseness
of the space confers a level of robustness to the model, as an elemental vector



can be distorted considerably while remaining closer to its original self than to
any other elemental vector in the space.

Superposition of binary vectors occurs by summing up the number of 1’s and
0’s in each dimension across all of the binary vectors added. If there are more
1’s than 0’s in a dimension, the superposition is assigned the value 1. If there
are more 0’s, a zero is assigned, and ties are broken at random (this can only
occur when an even number of vectors are superposed). So the superposition of
01 and 00 could be either 00 or 01, each with a probability of 0.5.

The need to keep a tally of the number of ones and zeros contributing to
each coordinate in the superposed vector (which we call the ‘voting record’)
raises an interesting implementation issue, because the memory requirements of
retaining an exhaustive voting record for a set of 10,000 dimensional vectors
prohibit assigning a floating point number to each dimension, and Semantic
Vectors often retains a store of term or document vectors in memory during
the superposition process. Consequently, we have opted for a space-optimized
implementation of the voting record, comprising of an ordered array of binary
vectors, implemented using Lucene’s OpenBitSet class. This implementation also
allows for superposition to occur using efficient bitwise operators, without the
need for iteration across the O(10,000) dimensions individually, as illustrated in
Table[2] This is accomplished by maintaining a temporary ‘cursor’ vector, of the
same dimensionality as the rows, and performing a series of sequential bitwise
XOR (exclusive OR) and NOT operations. The superposition can be weighted
by initiating the process at an appropriate level of the voting record, and the
size of the voting record can be constrained by maintaining a global minimum
value and ensuring that only values beyond this are stored in the record.

Table 2. Space Optimized Superposition; VR = Voting Record. CV = Cursor Vector
(initially, the vector to be superposed). VR = altered Voting Record (VR XOR CV).
CV = altered Cursor Vector (CV NOT VR)

Row VR CcVv VR CV
1 101 101 000 101
2 011 101 110 001
3 000 001 001 000
Value 123 224

Once the voting is complete, the value in each dimension is calculated. Again,
if this is more than a half of the number of votes in total, a one is assigned to the
superposition product in this dimension. If it is less than half, a zero is assigned,
and ties are broken at random.



The binding operation in the binary vector implementation is elementwise
XOR (exclusive OR), as used in the Binary Spatter Code [23]. As this operator
is its own inverse, it is also used to reverse the binding process. It is also possible
to accomplish reversible transformations using a permutation, by shifting or
swapping the bits of a vector. As elementwise operations on hyperdimensional
binary vectors are computationally inconvenient, Semantic Vectors implements
permutation 64 bits at a time, by shifting or swapping the elements of the array of
long integers that underlie Lucene’s binary vector (OpenBitSet) implementation.

In addition to the fundamental Vector Symbolic operations of superposition
(or bundling) and binding [12], we have implemented binary approximations of
orthogonalization, and quantum disjunction [25]. Orthogonality in binary vector
space is defined by a HD of a half of the dimensionality of the space. Give two
similar vectors, A and B, A can be rendered pseudo-orthogonal (that is, almost
orthogonal) to B by introducing random noise in dimensions that these vectors
have in common. Conversely, two vectors with a HD of more than half the dimen-
sionality can be rendered orthogonal by randomly selecting dimensions in which
these vectors differ, and changing them accordingly. The binary approximation
of orthogonalization facilitates a binary approximation of quantum disjunction.
This operator involves transforming the component vectors for disjunction into
a subspace made up of mutually orthogonal vectors using the Gram-Schmidt
procedure, so that no information is redundantly represented. Subsequently, a
vector C' can be compared to this subspace by measuring the length of C’s pro-
jection in the subspace, C’, and comparing this to the length of C (% is the
cosine of the angle between C and the subspace). In binary space, we approx-
imate this projection by adding together the normalized HD - 0.5 between the
vector C and each of the components of the subspace, to provide a measure of
the extent to which the cumulative similarity between the vector C and all of
the components of the subspace is greater than what one would anticipate by
chance.

6 Typed Vectors and Quantum Interaction

This section examines the mathematical structures we have developed from the
point of view of quantum interaction and informatics. Our hope here is that
comparing the behaviour of real, binary, and complex vectors will help to answer
one of the most pertinent questions in Quantum Interaction: what makes a
system “quantum” at all?

Some strong candidate answers to this question have been proposed. Some
have suggested that Born’s rule for probabilities is key, Aerts et al. have con-
centrated on the Bell inequalities [26], Bruza and Kitto on entanglement [27].
In information retrieval, quantum formalisms are central to the geometric mod-
els described by [28] and [22], the former focussing particularly on representing
conditionals, and the latter on representing logical connectives.

There is an accompanying debate on how central the quantum properties
should be: for example, is it proper to talk more about quantum-like or General-



ized Quantum Systems following Khrennikov [29]. The situation is complicated
by history: several properties of vector spaces (especially the logic of projection
onto subspaces) were explored in the service of quantum mechanics, and even
with hindsight it is not always easy to say which parts of the theory are neces-
sarily quantum, and which would be better described as properties of all vector
space models.

One property common to all our high-dimensional models is the sparseness
of point distribution. Semantic vectors are not all sparse in the sense of having
most coordinates equal to zero, but they are sparse in the sense of being very
spread out in their spaces: there are very few actual elemental or semantic vectors
compared with the number of points available. Thus, even those spaces that are
continuous in theory (such as those based on real and complex numbers) are
sparse and thus highly “quantized” in practice.

It follows that many of the quantized properties of semantic vector models
arise generally, and not because of any special parallel with the quantum me-
chanical model of complex Hilbert space. For example, there is no preference yet
discovered for self-adjoint operators in semantic vector models.

Here, our work has a particular contribution to make. We can now do many
experiments in textual informatics while comparing complex, real, and binary
vector space models. If a strong correspondence with quantum mechanics itself
actually exists, we would expect to see complex Hilbert space representations to
be distinctly superior for at least some modelling operations.

If, on the other hand, real or binary representations work best, we may come
to the more guarded conclusion that our semantic models are (obviously) vector
models, as are quantum Hilbert space models, but the similarity between seman-
tic models and quantum mechanics goes no further. Such findings would even
further motivate the question “What characterizes quantum systems?”, rather
than especially quantum mechanical systems. Consider the way the voting record
for binary vectors is maintained during learning and quantized to binary values
during normalization: the practical benefits of quantization itself are clearer in
the binary representation than in either the real or complex representation. Many
‘quantum’ properties (such as entanglement and non-commutativity of observ-
ables) may be formulated with vectors and matrices over any ground field.

We note also that there our particular use of Vector Symbolic Architectures,
which owes much to [9] and [7], is a specific class of vector models in which
product operations yield other vectors. The mathematical options are of course
much richer and sometimes demand more computational resources: for recent
and empirically successful examples, see the use of tensor products [16] and
matrices by [17].

7 Experiments and Evaluation

Using the system described in this paper, detailed experiments (using especially
complex and binary vectors) have already been conducted on using multiple
cues for analogical reasoning. These experiments use quantum disjunction to



model the many possible relationships that could be used as premises to deduce
new semantic relationships. Due to space constraints, these experiments are not
described here but in a separate paper [30]. These experiments also introduce
an innovative notion of ‘binary quantum disjuction’, which is altered from the
standard real or complex version, partly because the average similarity between
unrelated binary vectors is the normalized Hamming distance of 0.5. Of course,
these are (we hope) the first of many experiments that will compare and adapt
real, complex and binary techniques.

What we do present in the current paper is an appropriate computational
framework (if you will, a laboratory) in which such experiments will be con-
ducted. We sincerely hope that comparisons between different ground fields for
semantic representation will become the norm rather than the exception. If so,
this will catalyze technological progress and lead to core scientific insight.

8 Acknowledgments

This research was supported in part by the US National Library of Medicine
grant R21LM010826.

References

1. Varadarajan, V.S.: Geometry of Quantum Theory. Springer-Verlag (1985)

2. Boole, G.: The Mathematical Analysis of Logic. Macmillan) (1847) Republished
by St Augustine’s press, 1998, introduction by John Slater.

3. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning.
Springer Series in Statistics (2001)

4. Rosch, E.: Principles of categorization. In Collins, A., Smith, E.E., eds.: Readings
in Cognitive Science: A Perspective from Psychology and Artificial Intelligence.
Kaufmann, San Mateo, CA (1988) 312-322

5. Schvaneveldt, R.W.: Pathfinder Associative Networks: Studies in Knowledge Or-
ganization. Intellect Books (1990)

6. Géardenfors, P.: Conceptual Spaces: The Geometry of Thought. Bradford Books
MIT Press (2000)

7. Kanerva, P.: Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors. Cognitive Compu-
tation 1(2) (2009) 139-159

8. Boole, G.: An Investigation of the Laws of Thought. Macmillan (1854) Dover
edition, 1958.

9. Plate, T.: Holographic Reduced Representations: Distributed Representation for
Cognitive Structures. CSLI Publications (2003)

10. de Vine, L., Bruza, P.: Semantic oscillations: Encoding context and structure in
complex valued holographic vectors. In: Proceedings of the AAAI Fall Symposium
on Quantum Informatics for Cognitive, Social, and Semantic Processes (QI 2010).
(2010)

11. Aerts, D., Czachor, M., De Moor, B.: Geometric analogue of holographic reduced
representation. Journal of Mathematical Psychology 53(5) (2007) 389-398



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

Gayler, R.W.: Vector symbolic architectures answer Jackendoff’s challenges for
cognitive neuroscience. In: In Peter Slezak (Ed.), ICCS/ASCS International Con-
ference on Cognitive Science, Sydney, Australia. University of New South Wales.
(2004) 133-138

Jones, M.N., Mewhort, D.J.K.: Representing word meaning and order information
in a composite holographic lexicon. Volume 114. (2007) 1-37

Sahlgren, M., Holst, A., Kanerva, P.: Permutations as a means to encode order in
word space. In: Proceedings of the 30th Annual Meeting of the Cognitive Science
Society (CogSci’08), July 23-26, Washington D.C., USA. (2008)

Widdows, D.: Semantic vector products: Some initial investigations. In: Proceed-
ings of the Second International Symposium on Quantum Interaction. (2008)
Grefenstette, E., Sadrzadeh, M.: Experimental support for a categorical composi-
tional distributional model of meaning. In: Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing (EMNLP). (2011)

Baroni, M., Zamparelli, R.: Nouns are vectors, adjectives are matrices: Repre-
senting adjective-noun constructions in semantic space. In: Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing (EMNLP).
2010

(COheI)l, T., Widdows, D., Schvaneveldt, R. Rindflesch, T.: Logical leaps and quan-
tum connectives: Forging paths through predication space. In: Proceedings of the
AAAT Fall Symposium on Quantum Informatics for Cognitive, Social, and Seman-
tic Processes (QI 2010). (2010)

Cohen, T., Widdows, D., Schvaneveldt, R., Rindflesch, T.: Finding schizophrenia’s
prozac: Emergent relational similarity in predication space. In: Proceedings of the
Fifth International Symposium on Quantum Interaction. (2011)

Widdows, D., Cohen, T.: The semantic vectors package: New algorithms and public
tools for distributional semantics. In: Fourth IEEE International Conference on
Semantic Computing (ICSC). (2010)

Landauer, T., Dumais, S.: A solution to Plato’s problem: The latent semantic
analysis theory of acquisition. Psychological Review 104(2) (1997) 211-240
Widdows, D.: Geometry and Meaning. CSLI Publications (2004)

Kanerva, P.. Binary spatter-coding of ordered k-tuples. Artificial Neural
Networks—ICANN 96 (1996) 869-873

Kanerva, P.: Sparse distributed memory. The MIT Press, Cambridge, Mas-
sachusetts (1988)

Widdows, D., Peters, S.: Word vectors and quantum logic. In: Proceedings of the
Eighth Mathematics of Language Conference, Bloomington, Indiana (2003)
Aerts, D.; Aerts, S., Broekaert, J., Gabora, L.: The violation of bell inequalities in
the macroworld. Foundations of Physics 30 (2000) 1387-1414

Galea, D., Bruza, P., Kitto, K., Nelson, D.L., McEvoy, C.: Modelling the activa-
tion of words in human memory: The spreading activation, spooky-activation-at-
a-distance and the entanglement models compared. In: Proceedings of the Fifth
International Symposium on Quantum Interaction. (2011) 149-160

van Rijsbergen, K.: The Geometry of Information Retrieval. Cambridge University
Press (2004)

Khrennikov, A.: Ubiquitous Quantum Structure: From Psychology to Finance.
Springer (2010)

Cohen, T., Widdows, D., de Vine, L., Schvaneveldt, R., Rindflesch, T.C.: Many
paths lead to discovery: Analogical retrieval of cancer therapies. In: Sixth Interna-
tional Symposium on Quantum Interaction. (2012)



	Real, Complex, and Binary Semantic Vectors

