
Semantic Vectors: A Scalable Open Source Package and Online Technology
Management Application

Dominic Widdows, Kathleen Ferraro

MAYA Design, University of Pittsburgh
dwiddows@gmail.com, kaf1@pitt.edu

Abstract
This paper describes the open source SemanticVectors package that efficiently creates semantic vectors for words and documents from
a corpus of free text articles. We believe that this package can play an important role in furthering research in distributional semantics,
and (perhaps more importantly) can help to significantly reduce the current gap that exists between good research results and valuable
applications in production software. Two clear principles that have guided the creation of the package so far include ease-of-use and
scalability. The basic package installs and runs easily on any Java-enabled platform, and depends only on Apache Lucene. Dimension
reduction is performed using Random Projection, which enables the system to scale much more effectively than other algorithms used
for the same purpose. This paper also describes a trial application in the Technology Management domain, which highlights some
user-centred design challenges that we believe are also key to successful deployment of this technology.

1. Introduction
This paper describes the open source SemanticVectors
software package, which can be freely downloaded from
http://semanticvectors.googlecode.com.
The software can be used to easily create semantic vec-
tor models from a corpus of free text, and to search such
models using a variety of mathematical operations includ-
ing projections and algebraic product operations.
It is hoped that the availability of this software will be of
benefit both to academic and commercial users, due to its
simplicity, ease of use, and scalability. Instead of spending
considerable time on the basic text processing and search
operations, researchers and developers will be able to focus
their efforts on new experiments that investigate the rela-
tionship between mathematical properties of the model and
linguistic properties of the source texts, and on integrating
semantic matching and search features into larger systems
that support users with increasingly complex information
needs.
The core idea behind semantic vector models is that words
and concepts are represented by points in a mathematical
space, and this representation is learned from text in such
a way that concepts with similar or related meanings are
near to one another in that space. This introduces a range
of possible applications: the most immediate perhaps is the
end-user ‘semantic search engine’; semantic vector models
can also be used in resource-building applications such as
ontology learning and lexical acquisition, as part of data-
gathering for decision-support systems, detailed research,
etc. The SemanticVectors package itself was developed for
a demonstration of such an application, to help Technology
Management professionals at the University of Pittsburgh.
To systematically describe the package, this paper proceeds
as follows. In Section 2., we review some of the basics
of Semantic Vector models. Section 3. gives a summary
of Random Projection, the dimension reduction technique
used by the Semantic Vectors package, chosen particularly
for its scalability and computational tractability. Section 4.
describes the Semantic Vectors package itself, including a

detailed description of its design, implementation, current
and intended features. Section 5. describes the University
of Pittsburgh’s Technology Management Application, for
which SemanticVectors was initially built, and discusses
other potential applications of this technology.

2. Semantic Vector or WORDSPACE Models
Semantic vector models have received considerable atten-
tion from researchers in natural language processing over
the past 15 years, though their invention can be traced at
least to Salton’s introduction of the Vector Space Model
for information retrieval [Salton, 1971, Salton and McGill,
1983].
Semantic vector models include a family of related mod-
els for representing concepts with vectors in a high di-
mensional vector space, such as Latent Semantic Analy-
sis [Landauer and Dumais, 1997], Hyperspace Analogue
to Language [Lund and Burgess, 1996], and WORDSPACE
[Schütze, 1998, Widdows, 2004, Sahlgren, 2006].
The main attractions of semantic vector models include:

• They can be built using entirely unsupervised distribu-
tional analysis of free text.

• While they involve some nontrivial mathematical ma-
chinery, they make very few language-specific as-
sumptions (e.g., it is possible to build a semantic vec-
tor model provided only that you have reliably tok-
enized text).

• Similar techniques have been used in other areas, e.g.,
for image processing Bingham and Mannila [2001].

• The ease with which very simple distributed memory
units can collaboratively learn and represent seman-
tic vector models has been noted for its potential cog-
nitive significance [Kanerva, 1988]. This has led to
some overlap in interests between semantic vector re-
searchers in computational linguistics, and composi-
tional connectionist researchers in cognitive science.

http://semanticvectors.googlecode.com

• Being strongly distributional and associative in char-
acter, they have complementary strengths to some of
the more traditional formalist and symbolic semantic
techniques such as those based on propositional logic
and lambda calculus (for more discussion of this an-
gle, see Widdows [2008]).

Over several years, the strengths of these models have been
examined and evaluated in the performance of several tasks
of importance to natural language processing. Such appli-
cations of semantic vector models to date include:

• Information retrieval [Deerwester et al., 1990]. This
was the original motivation for applying dimension re-
duction to a term-document matrix, in the hope of cre-
ating a more semantically aware search engine (e.g.,
a search engine that can locate documents based on
synonyms and related terms as well as matching key-
words).

• Lexical and ontology acquisition [Hearst and Schütze,
1993, Widdows, 2003b]. The core principle here is
that knowledge of a few seed words and their rela-
tionships can help to infer analogous relationships for
other similar words that are nearby in the semantic
vector space.

• Word sense discrimination and disambiguation
[Schütze, 1997, Schütze, 1998]. The core principle
here is that the weighted sum of vectors for words
found in a particular region of text (called context
vectors) can be clustered, and the centroids of these
clusters can be treated as word-senses: occurrences
of an ambiguous word can then be mapped to one of
these word-senses, with a confidence or probability
derived from the similarity between the context vector
for this occurrence and the nearest centroids.

• Document segmentation [Brants et al., 2002]. Given
that we can compute context vectors for regions of
text, one can detect document boundaries when con-
text vectors leap from one part of the space to a com-
pletely different part of the space.

• Representing online communities and knowledge
[McArthur and Bruza, 2003]. As the amount of infor-
mation shared in online communities (Usenet groups,
mailing list archives, web forums, etc.) grows, it is in-
creasingly important for new users to be able to evalu-
ate and distinguish important information. One way of
doing this is to model the utterances observed in online
communities using semantic vector representations.

While framing this discussion in terms of vector models
suggests a strongly geometric account, it is worth noting
that probabilistic interpretations have been applied to la-
tent semantic models [Papadimitriou et al., 2000], and there
are several related models built from distributional prin-
ciples that are based on probabilistic rather than geomet-
ric insights (e.g., [Hofmann, 1999, Blei et al., 2003]). A
thorough comparison of probabilistic and geometric points
of view is beyond the scope of this paper: van Rijsber-
gen [2004] points out that quantum mechanics is already

a clearly extant framework that combines both probabilistic
and geometric insights, coordinates of vectors being related
to probability amplitudes. It may therefore be a mistake to
think of probabilistic and geometric methods as compet-
ing alternatives: they should perhaps rather be thought of
as two compatible ways of looking at related conceptual
structures.
In spite of the successes and benefits of semantic vector
models, they have been underadopted outside of the re-
search community. We believe that this is for at least three
reasons:

1. Implementations of semantic vectors that satisfy in-
dustry needs for reliable and well integrated software
have not been available.

2. Most algorithms for creating semantic vectors involve
computationally expensive matrix factorization, which
introduces scalability bounds.

3. There has been insufficient effort in exploring com-
pelling deployments in end user applications.

The SemanticVectors package aims to bring about a new
phase in the large scale deployment of semantic vector ap-
plications, by addressing the first two issues directly. We
also hope that this will make it much easier for many re-
searchers and developers to experiment in addressing the
third issue.

3. Reducing Dimensions using Random
Projection

Reducing dimensions is one of the key features that is used
to uncover the underlying features — the so-called ‘latent
semantic dimensions’ of a distribution. Random Projection
has enjoyed increased attention in the past few years, Bing-
ham and Mannila [2001], though the technique is older and
was introduced to us by Kanerva [1988]. The main insight
of Random Projection is that high dimensional vectors cho-
sen at random are “nearly orthogonal”, in a way that can
be formally characterized. Thus it achieves a result that is
for many purposes comparable to orthogonalization meth-
ods such as Singular Value Decomposition [see Sahlgren,
2005], but spends none of the computational resources.
The basic procedure for creating a random basic document
vector is extremely terse and easy to implement. Con-
sider two vectors which contain mainly zeros (i.e., they
are sparse), and whose nonzero entries are comprised of
an equal number of 1 and −1 entries. For example:

[0, 0, 0, 1, 0,−1, 0, 0, 0,−1, 0, 0, . . . , 0, 0, 1, 0, 0]

and

[0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, . . . , 0, 0,−1, 0].

It is easy to see that the expected value of the scalar product
of two such randomly generated vectors is zero. When we
multiply each coordinate in one vector by the correspond-
ing coordinate in the other vector, in most cases at least one
of the multiplicands is zero. In the rare cases that both mul-
tiplicands are non-zero, half the time we expect the signs

of the multiplicands to be the same, contributing +1 to the
scalar product, and the other half of the time we expect the
signs of the multiplicands to differ, contributing −1. So
on average, these contributions will cancel out. To judge
orthogonality we actually calculate the angle between the
vectors, so we normalize by the lengths of the vectors (i.e.,
cosine similarity rather than the raw scalar product), leav-
ing any non-zero results even closer to zero.
In practice, the SemanticVectors software uses a sparse rep-
resentation for these vectors (size proportional to the num-
ber of nonzero entries rather than the number of dimensions
overall), which has enabled the package to process corpora
consisting of far more documents. The authors would like
to thank Prof. Trevor Cohen of Arizona State University
for making this contribution.
There are several other ways of reducing dimensions, in-
cluding the following:

• Singular value decomposition (SVD) [Trefethen and
Bau, 1997]. Taking a matrix A, an eigenvalue decom-
position of the symmetric matrix AAT yields a factor-
ization A = ÛΣV , where U is an orthonormal matrix
and Σ is a diagonal matrix with non-increasing lead-
ing values, called the singular values. Taking the first
m of these only yields an approximation to the orig-
inal matrix A, the projection onto the basis given by
the first m columns of V . Singular value decomposi-
tion is the algorithm used in latent semantic indexing
[Deerwester et al., 1990] or latent semantic analysis
Landauer and Dumais [1997]. For an m × n matrix
A, the full singular value decomposition usually takes
time O(mn2 + m2n + n3) to compute Brand [2002].
This can be reduced in certain circumstances (e.g.,
if we declare in advance that only the first k eigen-
values should be computed), but certainly not below
quadratic complexity.

• Probabilistic Latent Semantic Analysis (PLSA) [Hof-
mann, 1999]. PLSA uses a version of the Expecta-
tion Maximization algorithm (see e.g., [Manning and
Schütze, 1999, Ch 14]) and reports some semantic im-
provements over geometric LSA. It is hard to evalu-
ate the computational complexity of the family of EM
algorithms generally, though they are often computa-
tionally demanding.

• Latent Dirichlet Allocation (LDA) [Blei et al., 2003].
Building on Hofmann’s work, LDA provides a proba-
bilistic generative model that accounts for documents
as being probabilistic mixtures of underlying topics,
these being the latent variables of the model. Blei et al.
[2003] also use an EM algorithm for estimating the
k topic parameters, and that estimating the model for
each document is of order N2k, where N is the num-
ber of words in the document.

Each of these approaches has been evaluated against at least
one other, sometimes against several. Griffiths et al. [2007]
also compare LDA-driven Topic Models against LSA, and
Sahlgren [2005] demonstrates that random projection per-
forms comparably well with LSA. However, we believe

these results give at best an incomplete picture of the whole
state-of-the-art, for at least three reasons:

1. It would be hard to organize the software necessary
to compare all of the above algorithms on a common
task.

2. Such a study might not yield positive results about new
methods. which is often encouraged.

3. It would be extremely hard to choose any one task or
even small collection of tasks in such a way that the
choice of task did not introduce a major bias into the
nature of the analysis. It is moreover probable that
different methods are appropriate to different tasks.

Given this difficulty of comparing algorithms in terms of
precision and recall, even on some fixed task using a static
dataset, the decision to build the SemanticVectors package
using the random projection technique was based on more
physical engineering considerations.

• It is easily the simplest of the algorithms known to us.
This means that the code for performing random pro-
jection was easy to write, easy to test, and easy to bun-
dle with the main SemanticVectors package. It intro-
duces no great complexity to the core package, and no
external dependencies on other software components.

• However well implemented, matrix factorizations
such as Singular Value Decomposition or probabilis-
tic clustering methods that are quadratic or higher in
the size of the data do not cope with the huge datasets
we are seeing nowadays. Given the explosion in cor-
pus size over the past decade, Moore’s law will not
“take care of it” for quadratic or higher algorithms —
Moore’s law instead ensures that only linear or better
algorithms can keep pace with the growth in data.

• Because Random Projection uses nearly orthogonal
basic vectors that are generated independently, parts
of the model can be created independently of one an-
other. This enables distributed model creation using
techniques such as MapReduce [Dean and Ghemawat,
2004], and incremental addition of new terms and
documents to models without rebuilding them from
scratch. This is crucial for any large-scale industrial
application.

• It would be easy to make improvements by extra
rounds of training: this possibility will be described
in the next section.

Moreover, in case Random Projection turns out to be a poor
choice of algorithm, the SemanticVectors software has been
designed so that several parts of the codebase are indepen-
dent of this decision. For vectors created using a com-
pletely different method, it is still perfectly possible to use
SemanticVectors as a search and exploration engine to anal-
yse these vectors (as was done for some of the results pre-
sented in Widdows [2008]).

4. The Semantic Vectors Package Itself
Having described some of the principles behind seman-
tic vector models and dimensionality reduction, this sec-
tion (perhaps the most useful in this paper) gives practi-
cal details into how the software package is actually imple-
mented. Our goal in this section, as with the package as
a whole, is to make the package as accessible, stable, and
useful as possible so as to reduce the bar of entry into this
space.

4.1. Summary
To begin with, we reiterate that the Seman-
ticVectors package is freely available under a no-
cost, BSD license, and can be downloaded from
http://semanticvectors.googlecode.com/.
As well as providing free downloads of source and object
code, this site is a portal to:

1. Wiki documentation pages, which currently include
installation instructions, instructions for bilingual
models, some discussion of and comparison of other
software and algorithms, release notes for particular
versions, etc.

2. Online discussion group and forum, used for a vari-
ety of topics including feature requests, suggested uses
and experiments, and wider discussion of related re-
search and engineering issues.

3. Issues and bug tracking features.

4. Detailed Javadoc pages. In general, the standard of
Javadoc comments for the package has been quite
good, so there is a wealth of information available on
how to use the package.

4.2. Ease-of-use
Though from a research point of view, it may be tempting
to think of algorithmic scalability and semantic evaluation
as the most important aspects encouraging general com-
munity uptake of the software. However, we believe that
this overlooks an important factor in producing successful
open-source software: many projects do not see the success
they deserve because they are hard to use. The fundamental
requirement that SemanticVectors had to be as easy as pos-
sible was partly influenced by the first author’s experiences
maintaining the Stanford Infomap NLP package (available
at http://infomap-nlp.sourceforge.net).
Over some four years of use by several members of the re-
search community, we received comments from one user
saying that the matrix decomposition algorithm (Singular
Value Decomposition) was not computationally tractable
for the amount of data they wished to process. Over the
same period, we received several dozen messages saying
that the software was missing dependencies that it could
not find, that it claimed to have all the necessary dependen-
cies but it would not compile, that it compiled but would not
run, or that it compiled, ran, claimed to have finished, and
produced no data. In spite of our best efforts, integration
with matrix algorithm packages and database storage sys-
tems on different platforms was the main day-to-day prob-
lem with Infomap, and deterred or disabled many potential

users. Most of these problems fell into two main categories
(which are obviously correlated):

1. Differences between platforms.

2. Dependence on too many other components.

To minimize platform-dependent issues, the Semantic Vec-
tors package is implemented entirely in Java. This means
that as soon as a user has a basic Java Development Kit
(JDK) installed, the only other things to do are to configure
some path variables, collect some appropriate data, and run
the software. (To make sure that initial data gathering is not
an initial deterrent, the King James Bible is included on the
main download page as a test dataset.)
To minimize dependence on external components, the core
software depends only on core Java classes that ship with
the JDK, and APIs that are part of Apache Lucene (http:
//lucene.apache.org/), a powerful and widely used
piece of open source software. We use Lucene’s tokeniza-
tion and indexing packages to create a basic term docu-
ment matrix. The Semantic Vectors package then uses the
Lucene API to create a WORDSPACE model from this term
document matrix, using Random Projection to perform on-
the-fly dimensionality reduction.
In practice, this means that all a user has to do is download
the software, make sure that the system $PATH variable
includes the directories containing the java and javac
binaries, and that the Java-specific $CLASSPATH variable
contains the SemanticVectors classes and (for building in-
dexes) the Apache Lucene classes. To compile from source,
Apache Ant is also needed. Users who do not wish to com-
pile the code for themselves can use the binary jar distri-
bution, which works on all major platforms that run Java.
The whole installation and configuration process is of
course described more fully in the online documentation.
So far the design decisions above appear to have been a
great success: over 500 copies of the software have been
downloaded, and so far we have not received a single ques-
tion or bug report regarding installation.
The package is extremely lightweight: the .tar.gz com-
pression of the current source distribution (version 1.6 at
the time of writing) ships at a somewhat astonishing 23KB!

4.3. Software Architecture
SemanticVectors has two main functions: i. building
WORDSPACE models (indexing), and ii. searching through
the vectors in such models (querying). Because these pro-
cesses have such different computational requirements, we
have tried to limit their common dependencies mainly to
core mathematical functions. Classes responsible for build-
ing and searching models both use a common vector store
file format: available options are at present: i. a simple
pipe-delimited text format, and ii. an optimized Lucene for-
mat.

Building Models
The main utility is BuildIndex, which creates
an object that reads some external data (e.g., a
TermVectorsFromLucene object, which reads
Lucene’s term-document matrix and creates reduced

http://semanticvectors.googlecode.com/
http://infomap-nlp.sourceforge.net
http://lucene.apache.org/
http://lucene.apache.org/

semantic vectors). Once initialized, the object implements
the VectorStore interface, and getAllVectors()
is called to serialize the learned vectors to disk, using one
of the implemented file formats.
To build a model using Lucene, it is first necessary to build
a Lucene index from suitably arranged files on some part
of a filesystem. The Lucene documentation gives easy in-
structions on how to do this in simple cases, and some utils
ship with the SemanticVectors package for building bilin-
gual Lucene indexes for input. For examples tested so far,
the SemanticVectors indexing process is at least two orders
of magnitude faster than Lucene’s (it is doing much less of
the work!), so while incremental indexing is a long-term
requirement for SemanticVectors, effort has not been put to
this yet. The indexing process is often memory intensive,
though large collections of several hundred thousand doc-
uments can be handled quickly on a standard computer if
plenty of Java heap space is allocated.
As well as building term vectors, there are classes for sub-
sequently building document vectors as a weighted sum
of the term vectors of their constituent terms, as has been
done since early vector model information retrieval systems
[see e.g., Salton and McGill, 1983]. These derived docu-
ment vectors should not be confused with the basic random
vectors for each document that are used to create the term
vectors in the first place.

Searching Models
Vectors are read from a file by an object that implements the
VectorStore interface. This object enables the caller to
get a vector with a particular name (for building queries),
and to iterate through all the vectors (for searching). We
have as yet implemented no way to perform a search with-
out iterating through all vectors in the store: how best to do
this for high-dimensional indexes is a fascinating and per-
sistent challenge in computer science [Chávez et al., 2001].
Scanning and ranking of these vectors is performed by
VectorSearcher, an abstract class whose implemen-
tations must also implement a getScore() method
which returns a score for each test vector. The highest
scores are recorded and the ranked list returned by the
getNearestNeighbors method which is shared by
all implementations of VectorSearcher. Training the
searcher (e.g., looking up simple query vectors, or cre-
ating more complex query expressions such as entangled
tensor products) is done during the initialization of each
VectorSearcher.
The benefit of this design is that it is very easy for new
scoring functions to be easily implemented. Whatever input
data these scoring functions require, if they can be reduced
to a mapping from the vector space to the real numbers,
then the rest of the code in the VectorSearcher class
enables the scanning and ranking to be done automatically.
A standard procedure is to build a query using one
VectorStore and run the search using another: pro-
vided they use a common basis, meaningful results will be
obtained. The same principle is used both for using term
vectors to search for documents, and for bilingual searches
where the query terms and the results are in different lan-
guages.

Common Mathematical Functions
There are several simple mathematical functions coded into
the VectorUtils class. These include scalar products
and cosine similarity, normalization, tensor operations (in-
ner and outer product, sum, normalization), convolution
products, and orthogonalization routines for vector nega-
tion and disjunction. Background on these mathematical
operations and their linguistic uses can be found in [Plate,
2003, Widdows, 2003a, 2004, 2008]

Vector File Formats
SemanticVectors currently supports two different file for-
mats for vector storage and I/O. The default is an optimized
binary format that uses Lucene’s very fast serialization and
deserialization operations for floating point numbers. There
is also a flat text file format, which represents one vector per
line using the simple format

name|a1|a2| . . . |an

where name is a string identifier (e.g., the word for a word
vector or the path and filename for a document vector) and
the following numbers are the coordinates of the corre-
sponding vector.
As one would expect, the text format is larger (up to 3
times) and slower (up to 10 times), but it is valuable for
interoperability with other software, e.g., for exporting a
model to be manipulated by another analysis tool such as
Matlab. There is a translater utility that easily enables users
to map between the two formats.
For either format, the number of dimensions is encoded as
metadata at the beginning of the file by newer versions of
the software: indexes created by older versions of the soft-
ware lack this metadata, in which case newer versions esti-
mate the number of dimensions by parsing the first vector.

Vectors and Numbers
It should be noted that the package presently assumes that
vector spaces are over the real numbers, and that real num-
bers are approximated by (4-byte) floats. (An exception is
the basic random index vectors, which are represented in
a sparse short integer (2-byte) format.) Simple floats are
used in preference to 8-byte double-precision numbers: at
first glance, it may seem strange in this day and age to save
resources by accepting less precise arithmetic representa-
tions; but it appears empirically to be more effective to use
these resources to enable more independent dimensions to
be represented.
Quite where to balance resources between real number pre-
cision and more expressive mathematical structures (e.g.,
more dimensions) is an interesting question. A related op-
portunity in 2-dimensions is whether to use complex num-
bers (pairs of interrelated real numbers) or more precise real
numbers [see van Rijsbergen, 2004, p. 25]. The math-
ematical properties we used to motivate the use of basic
random vectors whose non-zero values are taken from the
set {−1, 1} would also apply if these values are taken ran-
domly from the group of unit complex numbers. An adap-
tation of SemanticVectors to use vectors in complex Hilbert
spaces would be a logical next step, and proposes interest-
ing experiments.

Documentation and Testing
The package’s documentation is reasonably thorough and
well-organized: all major classes and interfaces have API
documentation, and a range of use cases and example
scripts are described in the project Wiki documentation.
The Javadoc-generated html files are checked in to the
main SVN repository, and so are automatically available
online. These files are not shipped with source distribu-
tions, but fresh documentation is generated locally as a
standard part of compilation.
The package’s tests are in much poorer shape. There is a
framework for building unit tests in a parallel part of the
source tree, and running these automatically using JUnit
(junit.org). Very few have been added so far, and as
features are added, this is becoming an increasingly press-
ing issue.

Maintenance and Support
Most of the development time for SemanticVectors has so
far been devoted to the development and documentation of
new functionality. However, there have been several sup-
port requests, which have been posted to and answered
through the Google Group associated with the project. Of-
ten these have led to the introduction of a new feature or
extra flexibility in the software.
The first author’s time commitment to the project has been
supported by Google as a “20% project”, through which
Google encourages its engineers to devote time to new re-
search and development beyond their main projects.
Support and commitment have gradually been emerging as
some users of the software become developers, which is
particularly important in the development of community-
backed open source software.

This concludes our presentation of the main features of the
software. The reader is reminded that the most up-to-date
versions of documentation should be found online, and if
these come to differ from anything stated in this paper, the
new versions take preference.

5. Technology Matching at the University of
Pittsburgh

The use case for which the SemanticVectors package was
specifically created was for the University of Pittsburgh’s
Office of Technology Management. The Technology Man-
agement domain illustrates some key aspects of informa-
tion management today.
Matching technologies to prospective licensees is cru-
cial to translating scientific knowledge generated through
university research into useful products. Searching and
matching capabilities incorporating concept mapping tools
promise to significantly increase and enhance our ability
to match available technologies to prospective licensees’
needs, as well as to perform targeted marketing of tech-
nologies.
The Technology Matching Project investigates some spe-
cific ways in which semantic vector technologies may be
used to help answer questions related to technology trans-
fer such as:

• Given a technology concept, what other technology
concepts are related?

• What patents have been applied for or issued for a par-
ticular technology?

• What other patents are relevant?

• What groups of technologies are available that satisfy
similar or complementary needs?

• What other materials — refereed articles, product de-
scriptions, press releases — can be used to learn about
a technology?

• How can we find out when problems faced in one do-
main may be solved by techniques developed in an-
other area?

• How can we tell which companies may be interested
in licensing a particular technology or group of tech-
nologies?

For many of these question types, experts in the field ex-
pressed frustration with search technologies focussed on
pure keyword-matching. It is rare for a technology disclo-
sure to contain exactly the same keywords as a description
of a product on a company’s website, but there are many
more cases where a relatively modest amount of induction
and inference can lead a user to join the dots between tech-
nologies and companies and at least make a useful hypoth-
esis. The missing ingredient using keywords only is still
some representation of the semantic connection between
different terms, and this led us to create a demonstration
online technology matching application, for which the Se-
mantic Vectors package forms the main “semantic glue.”
The initial demonstration is aimed at a user who has access
to technology disclosures and wants to match these to po-
tential licensees, as shown in Figure 1. Information about
834 companies was collected from their websites by taking
names from the US Federal Drug Administration database,
matching these to websites, and gathering documents from
these websites. (This was a reasonably accurate and low-
cost way of gathering enough data to create a useful sys-
tem, though it raises important questions of its own and
improving this “Web-as-corpus” part of the system may be-
come a whole new project.) These documents were indexed
by Lucene, and SemanticVector indexes created from the
Lucene indexes. The user can create a query by typing as
usual, or (more importantly) can select one of the existing
disclosures and use that as a query to find related docu-
ments. The user can then eyeball those documents to see
if they are good matches, and in exceptionally good situ-
ations, this could lead the user to contact the company in
question.
The demonstration has so far been received with enthu-
siasm by technology managers and analysts, though as
a thought-provoking proof-of-concept, rather than a com-
plete application. Some excellent matches have been sug-
gested that would not have been found with keywords
alone: however, data quality is a serious issue. The cov-
erage and accuracy of the web crawls could be curated

junit.org

Figure 1: Screenshot of the Technology Matching Demo showing a Technology Disclosure, Related Concepts, and Docu-
ments found using Semantic Vectors and Apache Lucene.

more effectively, and in many cases the difference in tex-
tual genre between company websites and university tech-
nology disclosures makes matching difficult (even for a hu-
man judge). Accurate results are not yet produced reli-
ably enough for the demonstration to warrant its own niche
as a separate application in an already complex environ-
ment of Google searches, MedTrack, databases of biolog-
ical disclosures, inventor contacts, CRM systems, etc. In-
tegration as a component in one or more of these tools is
a long term prospect, within the more general problem of
designing better discovery-rich applications for knowledge
professionals, without increasing complexity ever further
with yet more places for yet more information. Potential
ways to explore data offered by semantic vector models in-
clude clustering and visualization [Widdows, 2004, Ch 6],
and there is some excitement about using these technolo-
gies to enable the linking and bundling of complementary
technologies.

6. Conclusion
It is by now clear that a variety of distributional models
can be used to give interesting information about ideas that
are related in meaning. At the end of Section 4., we raised
three challenges in moving these techniques beyond the re-
search arena: providing stable reusable software; deploying
algorithms that scale with today’s expectations; and finding
compelling ways to use these techniques to help informa-
tion professionals.
We have described how the SemanticVectors project has ap-
proached the first two problems we raised. We have cre-
ated and publicly released reliable, sustainable software,
which has attracted several core users and some new ac-
tive contributors. The current system performs and scales
well compared with alternatives, and we believe that it has
laid the right groundwork to be able to scale much further.
This leaves us to discuss the third challenge: finding con-
vincing user applications. One possible use case that we
have been investigating is the use of semantic vectors in in-
formation exploration in technology management. Initial

responses have been enthusiastic, though many questions
about information quality have been raised.

7. Acknowledgments
The initial work on the SemanticVectors package was car-
ried out in a collaboration between the University of Pitts-
burgh and MAYA Design, funded by a Keystone Innovation
grant from the State of Pennsylvania.
The authors would also like to thank members of the re-
search community, particularly Trevor Cohen, for their con-
tributions to the project’s codebase, and Google, Inc. for
hosting the SemanticVectors package, and for supporting
the first author’s ongoing commitment to this project.
This paper differs slightly from the official version that ap-
peared in the LREC proceedings. This is because of com-
ments and corrections posted by members of the Seman-
ticVectors Google Group, who the authors would also like
to thank.

References
Ella Bingham and Heikki Mannila. Random projection

in dimensionality reduction: applications to image and
text data. In KDD ’01: Proceedings of the seventh
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 245–250, New York,
NY, USA, 2001. ACM. ISBN 1-58113-391-X. doi:
http://doi.acm.org/10.1145/502512.502546.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. La-
tent dirichlet allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

Matthew Brand. Incremental singular value decomposition
of uncertain data with missing values. In Proceedings of
the European Conference on Computer Vision (ECCV),
May 2002.

Thorsten Brants, Francine Chen, and Ioannis Tsochan-
taridis. Topic-based document segmentation with prob-
abilistic latent semantic analysis. In Conference on In-
formation and Knowledge Management (CIKM), pages
211–218, 2002.

Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and
José Luis Marroquı́n. Searching in metric spaces. ACM
Comput. Surv., 33(3):273–321, 2001. ISSN 0360-0300.
doi: http://doi.acm.org/10.1145/502807.502808.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simpli-
fied data processing on large clusters. In OSDI’04: Sixth
Symposium on Operating System Design and Implemen-
tation, San Francisco, December 2004.

Scott Deerwester, Susan Dumais, George Furnas, Thomas
Landauer, and Richard Harshman. Indexing by latent
semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

Thomas L. Griffiths, Mark Steyvers, and Joshua B. Tenen-
baum. Topics in semantic representation. Psychological
Review, 114(2):211–244, 2007.

Marti Hearst and Hinrich Schütze. Customizing a lexicon to
better suit a computational task. In ACL SIGLEX Work-
shop, Columbus, Ohio, 1993.

Thomas Hofmann. Probabilistic latent semantic analysis.
In Uncertainty in Artificial Intelligence (UAI’99), Stock-
holm, Sweden, 1999.

Pentti Kanerva. Sparse Distributed Memory. MIT Press,
1988.

Thomas Landauer and Susan Dumais. A solution to Plato’s
problem: The latent semantic analysis theory of acquisi-
tion. Psychological Review, 104(2):211–240, 1997.

K Lund and C Burgess. Producing high-dimensional se-
mantic spaces from lexical co-occurrence. Behavior
research methods, instruments and computers, 28(22):
203–208, 1996.

Christopher D. Manning and Hinrich Schütze. Foundations
of Statistical Natural Language Processing. The MIT
Press, Cambridge, Massachusetts, 1999.

Robert McArthur and Peter Bruza. Dimensional Repre-
sentations of Knowledge in Online Community, pages
98–114. Advanced Information Processing. Springer-
Verlag, 2003. URL citeseer.ist.psu.edu/
mcarthur03dimensional.html.

Christos H. Papadimitriou, Hisao Tamaki, Prabhakar
Raghavan, and Santosh Vempala. Latent semantic in-
dexing: A probabilistic analysis. J. Comput. Syst. Sci.,
61(2):217–235, 2000.

Tony Plate. Holographic Reduced Representations: Dis-
tributed Representation for Cognitive Structures. CSLI
Publications, 2003.

Magnus Sahlgren. An introduction to random index-
ing. In Proceedings of the Methods and Applications
of Semantic Indexing Workshop at the 7th International
Conference on Terminology and Knowledge Engineer-
ing (TKE), Copenhagen, Denmark, 2005. SICS, Swedish
Institute of Computer Science. URL http://www.
sics.se/˜mange/papers/RI_intro.pdf.

Magnus Sahlgren. The Word-Space Model: Using distri-
butional analysis to represent syntagmatic and paradig-
matic relations between words in high-dimensional vec-
tor spaces. PhD thesis, Department of Linguistics,
Stockholm University, 2006.

Gerard Salton, editor. The Smart Retrieval System – Experi-
ments in Automatic Document Processing. Prentice-Hall,
Englewood Cliffs, NJ, 1971.

Gerard Salton and Michael McGill. Introduction to mod-
ern information retrieval. McGraw-Hill, New York, NY,
1983.

Hinrich Schütze. Ambiguity resolution in language learn-
ing. CSLI Publications, Stanford CA, 1997.

citeseer.ist.psu.edu/mcarthur03dimensional.html
citeseer.ist.psu.edu/mcarthur03dimensional.html
http://www.sics.se/~mange/papers/RI_intro.pdf
http://www.sics.se/~mange/papers/RI_intro.pdf

Hinrich Schütze. Automatic word sense discrim-
ination. Computational Linguistics, 24(1):97–
124, 1998. URL citeseer.nj.nec.com/
schutze98automatic.html.

Lloyd N. Trefethen and David Bau. Numerical Linear Al-
gebra. S.I.A.M., 1997.

C.J. van Rijsbergen. The Geometry of Information Re-
trieval. Cambridge University Press, 2004.

Dominic Widdows. Geometry and Meaning. CSLI publi-
cations, Stanford, California, 2004.

Dominic Widdows. Orthogonal negation in vector spaces
for modelling word-meanings and document retrieval. In
Proceedings of the 41st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), Sapporo,
Japan, 2003a.

Dominic Widdows. Unsupervised methods for developing
taxonomies by combining syntactic and statistical infor-
mation. In Proceedings of Human Langauge Technology
/ North American Chapter of the Association for Compu-
tational Linguistics, Edmonton, Canada, 2003b.

Dominic Widdows. Semantic vector products: Some initial
investigations. In Quantum Interaction: Papers from the
Second International Symposium, Oxford, 2008.

citeseer.nj.nec.com/schutze98automatic.html
citeseer.nj.nec.com/schutze98automatic.html

	Introduction
	Semantic Vector or wordspace Models
	Reducing Dimensions using Random Projection
	The Semantic Vectors Package Itself
	Summary
	Ease-of-use
	Software Architecture

	Technology Matching at the University of Pittsburgh
	Conclusion
	Acknowledgments

