
The Semantic Vectors Package: New Algorithms
and Public Tools for Distributional Semantics

Fourth IEEE International Conference on Semantic Computing (IEEE ICSC2010),
Carnegie Mellon University, Pittsburgh, Pennsylvania, September 22-24, 2010.

Dominic Widdows
Google, Inc.

widdows@google.com

Trevor Cohen
University of Texas

trevor.cohen@uth.tmc.edu

Abstract—Distributional semantics is the branch of natural
language processing that attempts to model the meanings of
words, phrases and documents from the distribution and usage
of words in a corpus of text. In the past three years, research in
this area has been accelerated by the availability of the Semantic
Vectors package, a stable, fast, scalable, and free software
package for creating and exploring concepts in distributional
models.

This paper introduces the broad field of distributional seman-
tics, the role of vector models within this field, and describes
some of the results that have been made possible by the Semantic
Vectors package. These applications of Semantic Vectors have so
far included contributions to medical informatics and knowledge
discovery, analysis of scientific articles, and even Biblical scholar-
ship. Of particular interest is the recent emergence of models that
take word order and other ordered structures into account, using
permutation of coordinates to model directional relationships and
semantic predicates.

I. DISTRIBUTIONAL SEMANTICS AND VECTOR MODELS

Distributional semantics is an empirical field of research and
development that attempts to discover and model the meanings
of words by analyzing and comparing their distributions in
large text corpora. This approach to meaning can be traced at
least to the philosopher Wittgenstein:

For a large class of cases — though not for all —
in which we employ the word ‘meaning’ it can be
defined thus: the meaning of a word is its use in the
language. [1, §43]

and the linguist Firth:

You shall know a word by the company it keeps.[2]

In a sense, this principle has been implemented for centuries
in traditional concordances (see [3, Ch1]), and its application
to information in electronic form began during the first few
decades of research in information retrieval [4], [5]. As with
some of the fundamental models for search engines, some of
these approaches are consciously probabilistic (representing
word distributions as probability distributions), and others
are consciously geometric (representing word distributions as
vectors in high-dimensional spaces). In recent years, insights
from quantum mechanics have suggested that these two mind-
frames can be readily derived from common principles [6],
but this unification is beyond the scope of this paper, which
thus describes developments in geometric models and makes

no attempt to describe these models alongside probabilistic
alternatives.

The simplest distributional vector model is the term-
document matrix used by vector model search engines [5],[7,
Ch 5]. A term-document matrix is a table that keeps count
of how many times each term in a corpus appears in each
document. As with any matrix, the rows or columns can be
thought of as vectors in some vector space, so in a term-
document matrix whose rows represent terms and whose
columns represent documents, each row can be thought of
as a term vector whose dimension (number of coordinates) is
equal to the number of documents in the collection.

Not surprisingly, such matrices tend to be very sparse,
which invites compression. Sparse representations are used in
practice for optimized computation and storage, but compu-
tational optimization is not the only motivation. Semantically
it is clearly incorrect to assume that each document (or each
term) gives a new dimension orthogonal to all others, and
in practice, being aware of redundancies here (e.g., cases in
which one term can be defined using a combination of other
terms) is a core part of human linguistic knowledge. For this
reason, matrix factorization and other compression algorithms
have been used, beginning with the application of singular
value decomposition (SVD) to term-document matrices, in a
technique known since the early 1990’s as latent semantic
indexing or latent semantic analysis [8], [9]. Singular value
decomposition produces a reduced set of orthogonal axes for
representing term vectors, where the number of these axes
(often between 100 and 500) is much smaller than the original
number of dimensions (often equal to the total number of
documents in the corpus). It has sometimes been demonstrated
that words whose vectors are mapped closer together in this
decomposition are often closely related and even synonymous.
Singular value decomposition is, however, a computationally
costly process, normally of time complexity at least O(qp2)
for a matrix of size (q, p) [10, §31]. In addition, the process
is memory intensive, largely because the full matrix (before
compression) has to be stored in memory.

Random Projection is a cheaper alternative to singular value
decomposition which provides many of the same semantic
benefits [11]. Instead of spending large computational re-
sources guaranteeing that the basis for the reduced space
consists of orthogonal vectors, Random Projection rests on



the observation that, in high dimensions, any pair of vectors
chosen at random will be nearly orthogonal. In practice, an
easy way of generating such pseudo-orthogonal vectors is
to allocate a vector of zeros, and randomly change a small
number of coordinates to +1 and the same small number
of coordinates to −1. For example, consider the following
random vectors

A = (0, 0, 1, 0, 1, 0,−1, . . . , 0, 0)

B = (0, 1, 0, 0,−1, 0, 1, . . . , 0,−1)

and the scalar product A · B =
∑

AiBi. It is easy to see
that most of the individual products AiBi are zero, and that
the nonzero products are evenly distributed between +1 and
−1 contributions, leaving an expected total near to zero.
An important result that follows from this is the Johnson-
Lindenstrass Lemma [12], which guarantees that projection
from a high-dimensional vector space onto a smaller subspace
is likely to preserve the ordering of scalar products. Thus,
Random Projection can be used to reduce the number of
dimensions of a high-dimensional space of term vectors, while
preserving most of the relationships between those vectors.
Note that we should not expect random projection to improve
these relationships, for example by mapping synonyms closer
together, but this challenge can be addressed using Reflective
Random Indexing, as discussed in Section IV-C.

A key observation is that rather than being roughly cu-
bic, Random Projection from a sparsely represented term-
document matrix can be made to perform more-or-less linearly
[13]. This is a key advantage. A couple of decades ago, we
might perhaps have argued that “Moore’s law will take careof
it.” With hindsight, the opposite has happened — the size of
linguistic corpora has grown at least as fast as the resources
available to any one machine, so algorithms whose complexity
is any more than linear in the size of the corpus are becoming
gradually less tractable rather than more. This naturally leads
to increased interest in algorithms that can take advantage of
huge datasets, even if they are less sensitive on small datasets.

Examples of the time taken for matrix compression using
Random Projection and SVD on different corpora are shown
in Table I. Random Projection always outperforms SVD in
this area, and the difference become more pronounced with
larger corpora. Note that the numbers are not completely
representative of the algorithms in question, because they also
include many basic I/O operations. The N/A (not applicable)
entry for SVD on 5,000,000 Medline documents is because
in this case the workstation ran out of memory (max heap
allocation was set to 8GB).

The best way to get an intuitive feel for the power and
potential of these distributional semantic methods is to con-
sider some examples, as shown in Table II. The ‘RP’ column
shows results from Random Projection, the ‘SVD’ column
shows results from Singular Value Decomposition. These
results are reasonably typical: from manual inspection, we
have not yet found queries where these algorithms give results

TABLE I
TIME TAKEN FOR THE SEMANTIC VECTORS PACKAGE TO INDEX

DIFFERENT DOCUMENT COLLECTIONS USING RANDOM PROJECTION AND
SINGULAR VALUE DECOMPOSITION

Corpus Num Docs RP Time SVD Time
King James Bible 1256 2.8s 5.8s
Europarl English 4047 13s 37s
TASA 44,487 21.27s 2m 27s
Medline 1,000,000 1m 17s 6m 19s
Medline 5,000,000 2m 15s N/A

TABLE II
NEAREST NEIGHBOR TERMS WITH THEIR COSINE SIMILARITIES IN

VARIOUS MODELS

King James Bible. Query “abraham”.

RP SVD
1.00 abraham 1.00 abraham
0.64 sarah 0.81 isaac
0.54 isaac 0.68 sarah
0.47 bethuel 0.62 rebekah
0.44 mamre 0.61 phicol
0.42 jidlaph 0.57 bethuel
0.42 jehovahjireh 0.56 herdmen
0.42 thahash 0.55 nahor
0.42 tebah 0.54 ahuzzath
0.42 pildash o.54 esek

English Europarl Corpus. Query “wine”.

RP SVD
1.00 wine 1.00 wine
0.78 wines 0.76 wines
0.77 vineyards 0.63 grapes
0.76 musts 0.54 musts
0.75 vineyard 0.48 winegrowers
0.73 bottling 0.47 litre
0.69 grape 0.46 alcohol
0.68 distillation 0.43 alcoholic
0.67 saccharose 0.42 klerk
0.66 liqueur 0.42 distillation

of significantly different quality (though if such results are
found, we will endeavor to make them publicly known).

From results such as these it can be seen that the distri-
butional hypothesis can produce results with clearly semanti-
cally significant results, as has been shown in many research
experiments (see [7], [14] for many references). However,
distributional models have yet to realize their full potential
as part of the industrial mainstream. We believe that part of
the problem here has been with software performance and
reliability: hence much of the research in this paper focuses
on this area.

II. THE SEMANTIC VECTORS PACKAGE

The Semantic Vectors package, originally created for the
University of Pittsburgh, was released as an open source
package in October 2007 [15]. The package can be freely
downloaded over the web from http://code.google.com/p/
semanticvectors. It is released under a liberal BSD license
that permits commercial and non-commercial use and modi-
fications. The goal of the project is to provide a scalable and



stable platform for building commercial scale distributional
semantics applications, and for researchers and developers to
use as a platform for implementing new algorithms. Since the
release of the package there have been over 6000 downloads,
the development team has slowly grown, and an increasing
variety of algorithms and features have been added. To date,
these include:

• Sparse representations that scale to corpora containing
several million documents.

• In memory index caching, enabling batch mode experi-
ments to scale to thousands of queries.

• Support for bilingual models from parallel corpora.
• Basic clustering and visualization tools.
• Permutation and holographic encoding of word order

information.
• Reflective Random Indexing, a new technique for incre-

mental learning.
Vital to the growth of the project, these developments have

not come from a single source, but from several contributors
from several institutions. The package has supported several
experimental analyses that have led to publications and suc-
cessful dissertation and thesis projects. It has also provided
a framework within which research engineers can relatively
easily create implementations of recently published research,
and so build rapidly upon the state of the art.

This report summarizes the design and development of
the Semantic Vectors project, and presents some of the re-
search that has been performed using the package. Most of
the features described in this report are released as part of
the standard Semantic Vectors package and can readily be
demonstrated in action. This article also includes references
to other projects that have successfully used the package.

III. PACKAGE DESIGN AND DEVELOPMENT

The Semantic Vectors is implemented entirely in the Java
programming language, and depends only upon other libraries
written in Java. Here is a summary of some of the key design
principles and development activities.

Semantic Indexing. The creation of distributional semantic
models using the package proceeds in two phases. First, the
user builds a standard term-document index using the Apache
Lucene search engine. Apache Lucene is one of the most
prominent open source search engines: it is widely available,
reliable, well-supported by an active developer community,
and enables users to perform many important linguistic opera-
tions such as tokenization and stemming in different languages
using off-the-shelf components. Second, the user runs the
Semantic Vectors indexing algorithm itself, which creates the
distributional model by applying Random Projection to the
term-document matrix as pioneered by [16]. This process is
extremely fast (much faster than building the Lucene index),
and has far better scaling properties than Singular Value
Decomposition (SVD), used in traditional Latent Semantic
Indexing [8]. SVD has recently been added to the package
as an option, but it is computationally expensive and is

not preferred. In addition to being computationally tractable,
Random Projection can be performed iteratively, and it would
be comparatively simple to implement both incremental and
distributed indexing in this framework. This has not yet been
done, largely because the package runs so much faster than
Apache Lucene anyway.

The result of semantic indexing is a store of distributional
term and document vectors, which can be represented on disk
using an optimized Lucene binary format (preferred) or in
a human-readable textfile format for easy import into other
systems such as Matlab.

Semantic indexes can easily be built for relatively large
corpora (up to some millions of documents or billions of
words) on a typical laptop or desktop computer today.

Semantic Search. The basic method for semantic search
proceeds first by creating a query vector by reading term
or document vectors, and then scanning over the vectors
and selecting those that score best compared with this query
expression. The VectorStore and VectorSearcher use abstract
interfaces so that developers can easily create alternatives
with different I/O behavior, different query analysis logic, and
different scoring functions. For I/O, this design has enabled in-
memory search to support optimized server performance and
large batch experiments. For query construction and scoring,
it has enabled a full implementation of search using quantum
logical connectives as pioneered by the Infomap project [7,
Ch 7], holographic representations as implemented in the
BEAGLE model [17], and permutation search [18].

Configuration and Extension. To encourage researchers and
developers to use the package for new experiments, the design
has consciously promoted easy configuration and extension
where possible. Some of these decisions (reuse of off-the-
shelf language analyzers from Lucene, and abstract Vector-
Store and VectorSearcher interfaces) have been mentioned
already. Another example is the support for command line
configuration using a dedicated Flags class. This uses Java’s
reflection operations to enable developers to create new global
variables, document their intended usage, have their values
parsed automatically from command line arguments, and use
these variables anywhere in the codebase. This is a two-edged
sword: enabling an external client to modify internal state
from without is a risky violation of software encapsulation,
but giving developers the power to easily control new internal
functions without navigating the package’s call stack has
reduced the difficulty of learning the codebase well enough
to prototype new algorithms.

Documentation and Discussion Forums. Documentation is
crucial to a successful open source project at many levels, and
we use many online tools to help with this. Firstly, all classes
are documented internally using comments, and some of these
comments become public HTML pages through the Javadoc
system. Secondly, the project website at code.google.com also
provides Wiki and bugtracking, and allows users to download
an example corpus (the King James Bible). The bugtracking



system is also used for feature requests, and the Wiki is
used for a wide range of documentation including installation
instructions, example querying commands and expected results
using the example corpus, links to related research papers,
and a comprehensive release log. Thirdly, there is also a
SemanticVectors Google Group, which provides mailing lists
and a web forum where questions are posted, experiments are
proposed, and early results are often shared. Providing a quick,
public response to questions and problems posted to the forum
and bugtracking system is extremely important: this enables
new users to surmount any difficulties quickly, and provides
a great confidence boost to potential users who need to be
assured that using the Semantic Vectors package will be easy
and fruitful, not a frustrating timesink.

Testing. Maintaining a sophisticated codebase without au-
tomatic tests is almost impossible. The Semantic Vectors
package uses the JUnit testing library from junit.org for unit
testing key components, and for more complicated regression-
style tests, which simulate the building and searching of
semantic vector models and try to emulate the environment
in which users actually find themselves as closely as possible.

Many other factors have gone into the success and growth
of the project, but we believe that those noted above are
especially important.

IV. SUCCESSFUL RESEARCH AND DEVELOPMENT
ENABLED BY THE PACKAGE

One testimony to the success of SemanticVectors is the
wealth of algorithms and techniques that developers have
coded up and contributed to the package. Some of these
have existed for several years, others are recent — during
the past few years, theoretical understanding of hyperdimen-
sional vector calculus has progressed extremely rapidly and
rigourously [19], and there are several other algebraic and
geometric operations that are well-understood and still pending
implementation. In addition, completely new algorithms have
been successfully developed using SemanticVectors itself. This
section will describe a summary of the existing algorithms, and
will then give slightly more detail on the new research.

A. Implementations of Prior Research

This section briefly summarizes existing techniques that
have been incorporated into the SemanticVectors package for
general use.

Bilingual Models. Distributional models have been success-
fully adapted to multilingual applications using parallel cor-
pora. The basic notion is that terms and documents from more
than one language can be represented in the same vector space
provided that some of the underlying elemental vector axes are
the same for all languages: and such common elements can be
obtained using translated documents as basic contextual units
[7, §6.6]. Tools for building bilingual distributional models are
a standard part of the SemanticVectors package, and have been
extensively tested using the Europarl parallel corpus [20].

Clustering and Visualization. Clustering and visualization
tools can help to get a sense of the way words are related to
one another beyond what can be understood from scanning a
ranked list of results. SemanticVectors ships with a simple
kMeans clustering algorithm built in, and with tools for
producing 2-dimensional pictures of local regions of the vector
space using a projection algorithm based upon singular value
decomposition [7, §6.4].

Permutation and Convolution. One of the most persistent
charges levelled against traditional vector space models for
distributional semantics is that they are “bag of words” repre-
sentations — that is, they fail to take word order into account.
However, there are many tools in vector algebra that can be
used to model effects that depend upon ordered sequences.
Two such methods that have met with success recently are
permutation and convolution.

Permutation indexing, developed successfully by [18], uses
a permutation of coordinates to model the transition from one
word to the next. Thus if Π is a permutation, and the word
a is always followed by the word b and the word b is always
preceded by the word a, we would expect that Π(a) = b
(where by abuse of notation a is used both for a word and the
corresponding word vector). This technique was successfully
(and quite easily) incorporated into the SemanticVectors pack-
age, with immediately impressive results. For example, in the
King James Bible model, the query ‘king ?’ returns names of
individual Biblical kings, whereas the query ‘king of ?’ returns
names of Biblical cities and countries.

Convolution is another technique for incorporating word
order, using a non-commutative convolution product a·b which
is a projection of the tensor product into a lower-dimensional
space that avoids the exponential space cost that repeated use
of the tensor product incurs [22]. Convolution methods for
encoding word order effects were used successfully in the
BEAGLE model of [17], and have also been incorporated into
SemanticVectors.

B. Predicate methods

Predication-based Semantic Indexing (PSI) [23] adapts the
permutation-based method introduced by Sahlgren and his
colleagues to encode structured medical knowledge. Rather
than encoding the relative position of terms, PSI uses per-
mutations to encode the predicate type connecting two ar-
guments in an object-relation-object triplet (such as “sherry
IS A wine”), or predication. In addition, rather than encod-
ing relations between terms, the encoded predications occur
between discrete concepts in the Unified Medical Language
System (UMLS) meta-thesaurus [24]. These predications are
extracted by the SemRep system [25] from the biomedical
literature. The procedure to encode and retrieve predications
into a vector space is analogous to the procedure used for
positional indexing in Semantic Vectors. However, rather than
shifting the position of vector elements based on the relative
position of terms, an index number is assigned to each of the
40 predicate types (such as TREATS or CAUSES) encoded by



TABLE III
PERMUTATION AND SIMILARITY RESULTS FOR GEOPOLITICAL ENTITIES [21]. NOTE THE WAY IN WHICH THE PERMUTATION QUERY REPRESENTS THE

TARGETS OF A SEMANTIC RELATION MUCH MORE ACCURATELY THAN TRADITIONAL SIMILARITY QUERIES.

Permutation query
“king of ?”

0.728 assyria
0.699 babylon
0.662 syria
0.647 zobah
0.604 persia
0.532 judah
0.556 jarmuth
0.542 ellasar
0.536 bashan
0.533 belial

Permutation query
“king ?”

0.712 ahasuerus
0.502 agrippa
0.502 dale
0.448 chamberlain
0.432 ahaz
0.426 arising
0.411 cupbearer
0.409 arad
0.408 solomon
0.397 jareb

Similarity query
“king”

1.000 king
0.450 reign
0.449 over
0.442 all
0.438 so
0.412 servants
0.405 did
0.397 judah
0.389 now
0.381 queen

Similarity query
“assyria”

1.000 assyria
0.768 sepharvaim
0.754 gozan
0.717 hena
0.717 ivah
0.716 trustest
0.688 rabshakeh
0.683 hezekiah
0.659 shalmaneser
0.653 shebna

SemRep. Consequently, it is possible to encode and retrieve the
type of predicate connecting two UMLS concepts, rather than
the relative position in which two terms are likely to occur.
Table IV, below, shows the results of some predication-based
searches on a 500-dimensional PSI space derived from a set of
over 20 million predications extracted by SemRep from titles
and abstracts added to the biomedical literature over the past
decade.

When combined with Pathfinder network scaling [26], PSI
is able to derive plausible chains of reasoning linking two
concepts. In the example in Figure 1, a PSI-based associative
network is used to link the concepts “beer” and “wine”,
by finding the five nearest neighbors of a composite vector
representing both of these concepts, and preserving the most
significant links using Pathfinder. (Note that Figure 1 shows
automatic, not hand-curated results, the fact that “alcoholic
beverages” are “beverages” has been missed, and “beer” is
linked to both of these concepts instead of factoring through
“alcoholic beverages” alone.) This figure was produced using
the EpiphaNet system (http://epiphanet.uth.tmc.edu), which is
designed to allow researchers to explore concepts of interest
from the biomedical literature, with encouraging results [27].
The Semantic Vectors project served as a catalyst for the
development of the PSI model. The ideas underlying PSI
emerged during work on permutation-based indexing in Se-
mantic Vectors, which in turn provided an easily extensible
platform for the rapid prototyping of PSI.

C. Reflective Random Indexing

Of the methods of distributional semantics, the scalability
offered by Random Indexing makes it particularly appealing
in the biomedical context, on account of the rapid growth
of literature in this domain. One application in this area is
literature-based discovery, which seeks to derive previously
unrecognized and therapeutically useful connections between
biomedical concepts. One way of approaching this problem
is to find meaningful connections between terms that do
not co-occur directly in any document, a facility of certain
distributional models that has been termed “indirect inference”
[9]. However, Random Indexing in its original implementation
does not address the issue of indirect inference, as the resulting

matrix is a reduced-dimensional approximation of the original
term-by-document matrix, in which each document is repre-
sented as an independent dimension. In this original matrix,
the vectors for two terms that do not have a document in
common will share no non-zero dimensions, and consequently
their relatedness as measured with the commonly used cosine
metric will be zero. As predicted by the Johnson-Lindenstrauss
Lemma [12], Random Indexing preserves the distances be-
tween vectors in the original term-document matrix with high
probability, limiting its usefulness as a means of deriving
indirect inference. A solution to this problem emerged from
the possibility of cyclical retraining which was implemented
as an experimental feature in Semantic Vectors. The process
of generating document vectors from term vectors, and in turn
term vectors from document vectors can be performed itera-
tively. We have called this process Reflective Random Indexing
(RRI), and it has been shown to improve the ability of Random
Indexing to derive meaningful indirect inferences [13]. Sample
results obtained using Reflective Random Indexing are shown
in Table V.

When evaluated for the ability to predict terms that would
co-occur directly in the future from a time-delimited segment
of the biomedical literature, reflective variants outperformed
both the original and sliding-window based implementations of
Random Indexing, in a study which compared the overall per-
centage of the 50 nearest-indirect neighbors of 2000 randomly
selected biomedical terms from all of the citations added to
MEDLINE between 1980 and 1985 that co-occurred directly
in some abstract added after this time period. The ability of
Random Indexing to predict future co-occurrence improves
with up to two cycles of reflection. However repeated iterations
lead to a decrease in performance as term vectors tend to
converge and can no longer be discriminated from one another.
The ability to obtain meaningful indirect inference at minimal
computational cost has implications for information retrieval
in general, as this allows for the retrieval of documents that
are related to a query cue term, but do not contain this specific
term — an original motivation for the development of Latent
Semantic Indexing (LSI) [8].

As was the case with PSI, an adaptation of code contributed
to the Semantic Vectors platform was used to rapidly prototype



TABLE IV
PREDICATION-BASED RETRIEVAL. THE ANSWERS TO SIMPLE CLINICAL QUESTIONS SUCH AS “WHAT TREATS DEPRESSIVE DISORDER?” CAN BE

RETRIEVED FROM THE PSI SPACE (LEFT). ALTERNATIVELY, IT IS POSSIBLE TO OBTAIN THE STRONGEST RELATIONS ACROSS ALL PREDICATE TYPES
(RIGHT). THE RESULTS IN ALL CASES ARE PLAUSIBLE AND CAN BE LINKED BACK TO SUPPORTING EVIDENCE IN THE LITERATURE.

? TREATS depressive disorder ? ANY PREDICATE depressive disorder
0.98 : lexapro 1.0:abnormal cortisol → PREDISPOSES
0.77 : problem solving therapy 1.0:body weight problem → PREDISPOSES
0.74 : sertralin 1.0:unpleasant memories → PREDISPOSES
0.68 : marital therapy 1.0:conditioned helplessness → AFFECTS
0.66 : stablon 1.0:depressed parent → PREDISPOSES

sherry

martini

dry sherry

wine

alcoholic 
beverages

beverages

beer

lager

ISA

ISA

ISA ISA

ISA

ISA
ISA

Fig. 1. Extracted ISA relationships between different beverage concepts

TABLE V
REFLECTION AND INDIRECT INFERENCE. THE NEAREST INDIRECT NEIGHBORS (THE MOST STRONGLY RELATED TERMS THAT DO NOT CO-OCCUR
DIRECTLY IN ANY DOCUMENT) OF THE TERMS “COMPUTATIONAL” AND “SEMANTICS” AS DERIVED FROM THE TOUCHSTONE APPLIED SCIENCES

(TASA) CORPUS USING RRI (LEFT), AS COMPARED WITH RI AS ORIGINALLY IMPLEMENTED (RIGHT).

Reflective Random Indexing Random Indexing
Semantics Computational Semantics Computational
0.30 syntactic 0.32 primary 0.19 schoolers 0.18 assistive
0.30 meanings 0.31 microcomputers 0.18 ohh 0.18 redfields
0.27 grammatical 0.31 minicomputers 0.18 lei 0.18 dlm
0.27 comprehend 0.30 technological 0.17 kula 0.17 bearsbird
0.27 phrases 0.29 capability 0.17 felicia 0.17 mensural

RRI, both for initial investigations into indirect inference [13],
and for a later study that successfully applied RRI to the
problem of automated indexing of the biomedical literature
[28]. In addition, the idea that iteration may provide a solution
to the limited ability of RI to derive indirect inferences
emerged from a discussion on the Semantic Vectors online
forum.

D. Other Novel Uses

This section briefly summarizes some more of the novel
projects for which SemanticVectors has been used as an off-
the-shelf component.

Technology Management. The SemanticVectors project was
first commissioned and supported by the University of Pitts-
burgh as part of an online technology management search
engine described in [15].

Scientific Article Analysis. The package has been used as
part of a semantic analysis system that visually describes
the overlap between different scientific disciplines, created by
semantic mapping of journal articles [29].

Other applications described in the project online documen-
tation include: integration with LeActiveMath for a tutorial
system; distributional studies of social networking; word sense



discrimination and disambiguation; alignment of knowledge
resources such as Wikipedia and WordNet; and language
games in artificial intelligence. A more dynamic and complete
set of references is available on the project Wiki.

V. CONCLUSIONS

Distributional semantics, and vector models in particular,
have demonstrated useful results in many experiments, so
much so that industrial applications should be more well-
developed than they have been to date. We believe that part of
the reason for this lag between research and implementation
has been due to the lack of scalable and reliable software, a
gap we are trying to fill with the SemanticVectors package.

The SemanticVectors package is growing increasingly use-
ful and popular and has been used in a variety of scientific and
engineering projects. From an engineering standpoint, the open
nature of the package’s development, the simple architecture
of the main systems, and the wealth of tools available for
collaborating online, have helped to make the platform stable
and usable. This enables researchers to focus on creating new
applications, and the wealth of mathematical techniques and
application domains available has led the package to be used
in many innovative projects.

REFERENCES

[1] L. Wittgenstein, Philosophical Investigations. Blackwell: Blackwell,
1953, 3rd edition, 2001.

[2] J. Firth, “A synopsis of linguistic theory 1930-1955,” Studies in Lin-
guistic Analysis, Philological Society, Oxford, reprinted in Palmer, F.
(ed. 1968) Selected Papers of J. R. Firth, Longman, Harlow. 1957.

[3] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes: Compress-
ing and Indexing Documents and Images, 2nd ed. Morgan Kaufmann,
1999.

[4] K. Sparck Jones, Synonymy and Semantic Classification. Edinburgh
University Press, 1986, (Originally Cambridge PhD thesis, 1964).

[5] G. Salton and M. McGill, Introduction to modern information retrieval.
New York, NY: McGraw-Hill, 1983.

[6] C. van Rijsbergen, The Geometry of Information Retrieval. Cambridge
University Press, 2004.

[7] D. Widdows, Geometry and Meaning. Stanford, California: CSLI
publications, 2004.

[8] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” Journal of the American Society
for Information Science, vol. 41(6), pp. 391–407, 1990.

[9] T. Landauer and S. Dumais, “A solution to Plato’s problem: The latent
semantic analysis theory of acquisition,” Psychological Review, vol. 104,
no. 2, pp. 211–240, 1997.

[10] L. N. Trefethen and D. Bau, Numerical Linear Algebra. S.I.A.M.,
1997.

[11] E. Bingham and H. Mannila, “Random projection in dimensionality
reduction: applications to image and text data,” in KDD ’01: Proceedings
of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining. New York, NY, USA: ACM, 2001, pp.
245–250.

[12] W. Johnson and J. Lindenstrauss, “Extension of lipshitz mapping to
hilbert space,” Contemporary Math, vol. 26, pp. 189–206, 1984.

[13] T. Cohen, R. Schvaneveldt, and D. Widdows, “Reflective random
indexing and indirect inference: A scalable method for discovery of
implicit connections,” Journal of Biomedical Informatics, 2009.

[14] M. Sahlgren, “The word-space model: Using distributional analysis
to represent syntagmatic and paradigmatic relations between words
in high-dimensional vector spaces,” Ph.D. dissertation, Department of
Linguistics, Stockholm University, 2006.

[15] D. Widdows and K. Ferraro, “Semantic vectors: A scalable open source
package and online technology management application,” in Proceed-
ings of the sixth international conference on Language Resources and
Evaluation (LREC 2008), Marrakesh, Morroco, 2008.

[16] P. Kanerva, J. Kristofersson, and A. Holst, “Random indexing of text
samples for latent semantic analysis,” in Proceedings of the 22nd Annual
Conference of the Cognitive Science Society, 2000.

[17] M. N. Jones and D. J. K. Mewhort, “Representing word meaning and
word information in a composite holographic lexicon,” Psych. Review,
vol. 114, no. 1, 2007.

[18] M. Sahlgren, A. Holst, and P. Kanerva, “Permutations as a means to
encode order in word space,” in Proceedings of the 30th Annual Meeting
of the Cognitive Science Society (CogSci’08), Washington D.C., 2008.

[19] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, June 2009.

[20] P. Koehn, “Europarl: A parallel corpus for statistical machine transla-
tion,” in MY Summit, 2005.

[21] D. Widdows and T. Cohen, “Semantic vector combinations and the
synoptic gospels,” in Proceedings of the Third International Symposium
on Quantum Interaction, Saarbrücken, March 2009.

[22] T. Plate, Holographic Reduced Representations: Distributed Represen-
tation for Cognitive Structures. CSLI Publications, 2003.

[23] T. Cohen, R. Schvaneveldt, and T. Rindflesch, “Predication-based se-
mantic indexing: Permutations as a means to encode predications in
semantic space,” in Proceedings of the AMIA annual symposium, San
Francisco, 2009.

[24] A. McCray, A. Aronson, A. Browne, T. Rindflesch, A. Razi, and
S. Srinivasan, “UMLS knowledge for biomedical language processing,”
Bulletin of the Medical Library Association, vol. 81, p. 184, 1993.

[25] T. Rindflesch and M. Fiszman, “The interaction of domain knowledge
and linguistic structure in natural language processing: interpreting
hypernymic propositions in biomedical text,” Journal of Biomedical
Informatics, vol. 36, pp. 462–477, 2003.

[26] R. Schvaneveldt, Pathfinder associative networks: studies in knowledge
organization. Norwoood, NJ, USA: Ablex Publishing Corp, 1990.

[27] R. Schvaneveldt, T. Cohen, and K. Whitfield, “Paths to discovery,” in
Proceedings of the 36th Carnegie Mellon Symposium on Cognition,
Pittsburgh, PA, USA, June 2009.

[28] V. Vasuki and T. Cohen, “Reflective random indexing for semi-
automated indexing of medline abstracts,” in Proceedings of the AMIA
Symposium, 2009.

[29] G. Newton, A. Callahan, and M. Dumontier, “Semantic journal mapping
for search visualization in a large scale article digital library,” in Second
Workshop on Very Large Digital Libraries at the European Conference
on Digital Libraries (ECDL), 2009.


