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Abstract

Semantic vector models have proven their worth in a
number of natural language applications whose goals
can be accomplished by modelling individual semantic
concepts and measuring similarities between them. By
comparison, the area of semantic compositionality in
these models has so far remained underdeveloped. This
will be a crucial hurdle for semantic vector models: in
order to play a fuller part in the modelling of human
language, these models will need some way of modelling
the way in which single concepts are put together to
form more complex conceptual structures.

This paper explores some of the opportunities for us-
ing vector product operations to model compositional
phenomena in natural language. These vector opera-
tions are all well-known and used in mathematics and
physics, particularly in quantum mechanics. Instead of
designing new vector composition operators, this paper
gathers a list of existing operators, and a list of typical
composition operations in natural language, and de-
scribes two small experiments that begin to investigate
the use of certain vector operators to model certain
language phenomena.

Though preliminary, our results are encouraging. It is
our hope that these results, and the gathering of other
untested semantic and vector compositional challenges
into a single paper, will stimulate further research in
this area.

Introduction and Background

Compositionality in Mathematical
Semantics
The work of George Boole and Gottlob Frege in the 19th

century pioneered a new era of research and develop-
ment in mathematical linguistics: that is, the applica-
tion of mathematical and logical methods to the study
and representation of human language. Grandees of
this field in the 20th century include Tarski, Montague,
Fodor: a survey of this huge area is beyond the scope
of this paper, though an interested reader should per-
haps begin with Partee, ter Meulen, and Wall (1993).
Significantly for the purposes of this paper, the point
we would like to emphasize is that this tradition has
been strongly influenced by a maxim that has become

known as “Frege’s context principle” or “Frege’s prin-
ciple of compositionality”, which may be translated as

It is enough if the sentence as whole has meaning;
thereby also its parts obtain their meanings.

(Frege 1884, §60); see also (Szabó 2007).

Following this tradition, is has become much more
normal for mathematical linguists to give account of
compositional semantics (the meaning of phrases and
sentences) while paying little attention to lexical seman-
tics (the meaning of individual words). For example, a
typical formal representation of the verb “loves” may
use the lambda calculus expression

λx λy [loves(x, y)]. (1)

This tells us how “loves” behaves as a transitive verb
with respect to its arguments, and allows us to fill in
the variables x and y to bind the predicate to these ar-
guments. But it tells us nothing about the difference
between “loves” and “hates” or even “eats” and “pays”:
in short, it tells us absolutely nothing about what it
means to be loved, except that there must be some-
thing being loved and something doing the loving. One
noted problem with filling this gap is the acceptance
that the lexicon is much more empirical than the gram-
matical structure of a language, and so much harder to
formalize.

Semantic vector models
One of the great virtues of semantic vector models is
that they have begun to fill this lexical gap, by appeal-
ing to the empirical data itself. Natural language has
not grown any easier to model formally, but it has be-
come extremely easy to get hold of and to process large
amounts of the raw phenomenon itself, in the form of
written documents available electronically. By the early
1990s, this had lead researchers to create large scale
models of words and their relationships, initially by
factoring large term-by-document matrices as used in
information retrieval systems (Deerwester et al. 1990;
Landauer & Dumais 1997) and later by examining cooc-
currence between pairs of words in textual windows
(Lund & Burgess 1996; Schütze 1998).



Table 1: Words similar to “loves” in a semantic vector
model constructed from the British National Corpus.

Word Score
loves 1.000000
love 0.702550
loving 0.613473
tells 0.524047
loved 0.514558
god 0.491559
bless 0.483682
spirit 0.482846
thee 0.479075
hate 0.478082
believer 0.474993
intimacy 0.472540
passionate 0.467109
affections 0.458393

Semantic vector models are models in which con-
cepts are represented by vectors in some high dimen-
sional space W (usually 100 < dim W < 500). Sim-
ilarity between concepts may be computed using the
analogy of similarity or distance between points in this
vector space. Semantic vector models are by now a
recognized part of mainstream computational linguis-
tics, and are sometimes described as wordspace mod-
els (Widdows 2004; Sahlgren 2006). Their formal the-
ory as part of information retrieval, and the relation-
ship of their logic to that of quantum mechanics, is
also well established (van Rijsbergen 2004). Their im-
portance is also becoming established in cognitive sci-
ence, championed by Gärdenfors (2000) as “Concep-
tual Spaces”. There is considerable cognitive signifi-
cance in the fact that semantic vector models can be
learned and represented using only sparse distributed
pieces of memory such as might be available in individ-
ual neurons (Kanerva 1988). Thus, there is a potential
account for how such models may take shape in the
brain, something that is still largely lacking for formal
symbolic models. It is also interesting that this method
for constructing semantic vectors, known sometimes as
“Random Indexing” or “Random Projection” is also
the most computationally tractable and thus likely to
lead to commercial-scale applications (Sahlgren 2005;
Widdows & Ferraro 2008).

Strengths and Weaknesses, and the Goals
of this Paper
To get a sense of the complementary strengths of se-
mantic vector and lambda calculus representations,
compare the table of similar terms to “loves” in Table 1
with the lambda calculus expression in Equation (1).

The two representations are clearly doing very dif-
ferent things, and it is easy to see that both are im-
portant parts of understanding what the word “loves”
means and how it may be used in English. In a larger

survey, other models could well be included such as a
(smoothed) collection of n-grams (Manning & Schütze
1999, Ch. 6), relations in a lexical network such as
WordNet (Fellbaum 1998), and a traditional dictionary
definition. The two representations we have considered
explicitly are stressed here because they motivate the
central question of this paper: is it possible to have a
semantic calculus that can exhibit both the composi-
tional sophistication of traditional formal models like
lambda calculus, and the empirical robustness and ba-
sic associational abilities of a semantic vector model?

This paper does not provide a full answer to this ques-
tion — as we will demonstrate, it is not one question
but many. Instead, we attempt to summarize what
we believe to be the main challenges and opportuni-
ties posed by the question, and describe a small hand-
ful of initial experiments. The work builds on that of
other researchers, particularly Plate (2003) and Clark
and Pulman (2007). Our main intent is to demonstrate
that, in spite of obvious setbacks and pitfalls, there are
many possible avenues of exploration which between
them contain sufficient promise of useful results that
much further research should be done in this area.

Semantic Product Operations

There are many many forms of semantic composition
in natural language. Some of these have received a
great deal of attention in the literature of mathematical
linguistics, and others have been less thoroughly stud-
ied. In this section, we present a summary of a few of
the more typical composition operations, and give some
idea of systems in which they are important.

Functional Composition
In many syntactic frameworks, verbs are modelled as
functions that take nouns as their arguments. The
lambda calculus expression in Equation (1) is typical.
We describe this as functional composition in the math-
ematical or computational sense: the verb is modelled
as a “function” that takes two “variables” (nouns) and
returns a statement or sentence. In truth-functional ac-
counts, the composed meaning of the statement, once
the variables have been put in the right slots, is the set
of worlds or situations in which the statement is true.
Functional composition is naturally important for natu-
ral language processing systems that are trying to map
natural language statements onto some fragment of the
real world, such as task-oriented dialogue systems. The
modelling of functional composition in language is of-
ten traced to Frege’s formulation of predicate calculus,
though the notation we use today owes more to the
American philosopher C. S. Peirce.

Morphological Inflection
In English, the sentence “She speaks.” is a functional
composition of a pronoun with an intransitive verb.
However, in many languages this meaning is produced
as a single word. For example, in Spanish the verbal



root “habl-” is inflected with the ending “-a” so that
the single word “habla” may convey the same meaning.
Though not usually thought of as a topic in seman-
tic composition, computational morphology is clearly
related and needs to be part of language processing
systems that involve any level of language parsing and
generation.

Logical Connectives

Half-a-century before the work of Frege, Boole intro-
duced the algebra of logical connectives, and specifically
intended them to be used to model statements in natu-
ral language (Boole 1854). All computer scientists and
logicians are familiar with Boolean logic, which has be-
come the propositional core of the more complex predi-
cate calculus. As such, Boolean logic is available in ev-
ery modern computer programming language, whereas
other logical operations such as quantifiers often have
to be coded by hand, partly because the computational
complexity and time/space tradeoffs of these operations
varies considerably from situation to situation.

The most obvious examples of logical connectives in
user-facing natural language systems is in traditional
keyword search engines, still available as part of the
“Advanced Search” interface in Internet search engines
such as Google.

Complex Nominals

Traditional texts on mathematical linguistics often lead
the student to believe that a functional approach based
on predicate logic is the correct way to model the ba-
sics of semantics in natural language, leaving a host of
other issues to be treated as more advanced topics (for
example, see Jurafsky and Martin (2000, Ch 14)).

Complex nominals are one of the several notable cases
where this approach fails. Boolean conjunction being
equivalent to set intersection, a “tiger moth” is not a
Boolean conjunction of a tiger with a moth, a “tiger
economy” is not a Boolean conjunction of a tiger with
an economy, and “Romeo and Juliet” is not a Boolean
conjunction of Romeo with Juliet. In the latter case,
the meaning of “and” is more like the traditional dis-
junction or union operation, and in the first two cases,
the noun “tiger” is being used as a modifier, in the first
case to signify “striped” in the second case to signify
“fierce”.

Adjectival modifiers show similar plasticity
(Gärdenfors 2000, p. 120). “Red apples” can be
interpreted as a Boolean conjunction, but the meaning
of “red wine” (more like the colour purple) and
“red skin” (more like the colours pink and brown,
perhaps) are both contextually scoped by the space of
possible wine and skin colours, of which the listener is
presumably aware. “Red politics” and “red herring”
go further into the idiomatic realm, though the first
involves some compositionality in that the modifier
“red” is still selecting a kind of “politics”.

Systematic Ambiguity in Compositions
As alluded to above, many modifiers take on different
meanings depending on the head-word they are modi-
fying. For example, a “long house” has a large physical
length, but a “long flight” takes a long time. (One
might argue that this is still a function of length, but
then one must account for the fact that a single distance
may be covered by a long drive or a short flight.) Still
further, a “long book” takes a long time to read, and
a “long light” is a traffic light that takes a long time
to change. These semantic phenomena are well known,
and are described particularly by Pustejovsky (1995).

Summary
We have only listed a few types of compositional opera-
tions in natural language, but it should already be clear
that the functional and propositional operators studied
at length in mathematical linguistics do not account for
all of them, and that semantic composition in natural
language cannot as a whole be modelled using a single
mathematical operation, or even using handful of oper-
ations within a single mathematical structure (at least,
not one that has yet been discovered).

In practical language processing systems, this has left
many gaps to be filled by largely informal or acciden-
tal means. For example, we expect a search engine
to return the correct documents for the query “tiger
moth,” not because the Boolean model correctly com-
poses the meanings of the individual terms, but be-
cause the Boolean model picks out documents whose
authors have correctly composed these meanings (where
by “correctly” we mean “according to the convention
that the user expects”). It is easy to see situations
where this doesn’t serve user needs. For example, a
user may encounter a tiger moth for the first time, and
not knowing its name, may produce the query “moth
with black and orange stripes.” Again, a search engine
may respond with informative documents, but only if
one of the authors has written a document that conve-
niently says words to the effect that “This moth with
black and orange stripes is called a tiger moth.” We
are still relying on the users, not the system, to have
correctly designed and interpreted the natural language
descriptions, and as we all know, this does not always
work very well. This is not to say that natural lan-
guage processing does not have some tools to offer:
for example, collocation extraction tools (Smadja 1993;
Manning & Schütze 1999) may be used to help with
extracting nounphrases and indexing them accordingly.
But such tools are rarely semantic in nature: they will
discover that a particular phrase is more-or-less fixed,
but will not yet infer any special relation between this
lexical fixedness and a conventionally accepted mean-
ing.

Vector Space Product Operations
We would like to be able to use models in which the
semantics of individual elements gives rise to seman-



tic interpretations of compound expressions. This sec-
tion describes some of the operations that are available
for composition in vector space models. Again, we are
forced to be brief and refer readers to more detailed
textbooks in linear and multilinear algebra for more
detail (Jänich 1994; Fulton & Harris 1991).

Vector Addition
The simplest operation for composing two vectors v and
w in a vector space W is the vector sum. This is a
mapping W × W → W which gives the vector space
its basic structure as a commutative group. Vector ad-
dition is used throughout vector space approaches to
information retrieval to compute vectors for documents
and multiword queries from vectors for individual terms
(Salton & McGill 1983; Baeza-Yates & Ribiero-Neto
1999). Often terms in the sum are weighted using some
measure of information content such as tf-idf. Vector
addition does perform adequately enough to get many
operations to work in information retrieval systems, in
spite of the obvious objection that due to commutativ-
ity, such systems do not distinguish a blind Venetian
from a Venetian blind.

Vector addition has been used for operations other
than document retrieval, particularly word sense dis-
crimination (Schütze 1998). Word sense discrimination
first uses clustering of word vectors to obtain clusters
that can be interpreted as word senses, uses vector ad-
dition of terms in a given context window to form a
context vector for each occurrence, and then assigns
each occurrence to a word sense using cosine similarity.
For an introduction to vector addition, cosine similarity
and clustering, see (Widdows 2004, Ch. 5,6).

Direct Product
The direct product V ⊕W of two vector spaces V and
W is the vector space formed of elements {v ⊕ w | v ∈
V,w ∈ W}, with addition defined by the identity

v1 ⊕ w1 + v2 ⊕ w2 = (v1 + v2)⊕ (w1 + w2).

Direct products are additive in dimension, that is,
dim(V ⊕ W ) = dim V + dim W . Direct products may
be seen as a way of combining vectors in a way that
keeps the identities of the constituents separate.

Logical Connectives and Quantum Logic
The first attempts to incorporate something akin to
Boolean operators into vector models for information
retrieval was in the work of Salton, Fox, & Wu (1983).
This work uses p-norms to normalize a sum of query
terms, defined by

Lp(x) :=

(
n∑

i=1

xp
i

)1/p

.

The notion is that, by tuning the parameter p, a
query score can be made to select more specifically for

similarity along particular dimension (like a conjunc-
tion), or can be made to be more tolerant of several
near misses in several dimensions (like a disjunction).

The development of a full logic for information re-
trieval, along with the appreciation that it involves
some distinctly non-classical operations, is thanks
largely to van Rijsbergen (1986 and ongoing), culmi-
nating recently in the thorough demonstration that
the vector space logic for information retrieval is the
same as the quantum logic of Birkhoff and von Neu-
mann (1936). (See (van Rijsbergen 2004) and also
(Widdows 2004, Ch 7).)

In any vector space W , the subspaces of W naturally
form a lattice in which the meet of two subspaces U and
V is given by their pointwise intersection U ∩ V , and
the join operation given by their linear sum U + V =
{u+v | u ∈ U and v ∈ V }. If neither subspace contains
the other, this operation introduces many points that
are in neither of the original subspaces, which is why
the lattice is non-distributive, which formally accounts
for the possibility of a particle being in a mixture of
states in quantum mechanics.

If the vector space W is also a Hilbert space (com-
plete, and equipped with a Hermitian scalar product),
then the space has well-defined orthogonal projection
and orthogonal complement operations. In practical
examples of wordspace, this is always the case, the
Hermitian scalar product being the standard scalar
product from which cosine similarity is defined. The
operations of projection onto an intersection, a linear
sum, and an orthogonal complement give respectively
the conjunction, disjunction and negation operations
of a logic. In a confusion of terminology, many com-
puter scientists and mathematical linguists refer to this
non-distributive structure as a “non-standard logic”,
whereas mathematical physicists explicitly refer to log-
ics derived from lattices in Hilbert spaces as the “stan-
dard logics” (Varadarajan 1985).

Simple consequences arise from these mathematical
underpinnings in the ability of the respective logics to
accurately represent linguistic meaning. Consider, for
example, the sentence

Catch bus 41 or 52, the journey should take 20 or
25 minutes.

Boolean logic correctly models the discrete statement
“Catch bus 41 or 52”, which does not imply that any
other bus with a number between 41 and 52 is appro-
priate. Quantum logic correctly models the continuous
statement “the journey should take 20 or 25 minutes,”
for which a journey time of 22 minutes is perfectly con-
sistent.

In semantic vector models, quantum negation / or-
thogonal projection has (to our knowledge) been eval-
uated on a larger scale empirical task than any vec-
tor composition operation apart from the vector sum.
The empirical task in question was the removal of un-
wanted keywords and their synonyms in a document
retrieval system. Quantum negation significantly out-



performed Boolean negation at removing search results
that contained synonyms and neighbours of unwanted
query terms (Widdows 2003).

General Projection Operators
Quantum logic is a logic of projection operators. While
the lattice of subspaces and orthogonal complements
is perfectly well defined, it is the associated lattice
of orthogonal projections onto these subspaces that is
used to model “quantum collapse” and which exhibits
the non-commutativity of operators from which Heisen-
berg’s Uncertainty Principle arises.

As a generalization, we should note that projec-
tion operators can be considered quite independently
of quantum logical connectives. Some researchers
have already considered using projections to model
conceptual or language operations. For example,
Gärdenfors (2000) uses projection onto a convex re-
gion to account for the use of the term “red” in “red
wine”, “red skin”, etc. to refer to colours that are not
really “red”. Widdows (2004) also suggests that pro-
jections may be used to model the way a phrase like
“tiger moth” selects the appropriate feature of “tiger”
as a modifier to the “moth” concept.

Support Vector Machines and Kernel
Methods
Though the notion of representing phenomena such as
words using vectors is still considered novel by many
linguists, it is taken for granted in standard textbooks
on statistical learning (Hastie, Tibshirani, & Friedman
2001). In the basic formulation of the problem, it is
presumed that the input data consists of a collection of
objects described by characteristic feature-vectors (that
is, statements of the extent to which an object exhibits
a particular feature). The objects may also be labelled,
for example, if the objects are text documents, they
may be labelled as “spam” or “not-spam”, or as “rele-
vant” or “non-relevant” to a particular query. Inferring
the correct labels or classification for hitherto unseen
objects can then be formulated as a statistical machine
learning problem, for which many solutions have been
developed.

Support Vector Machines (Cristianini 2000) consti-
tute one family of techniques that is of particular inter-
est to the current discussion. Support Vector Machines
work by finding a hyperspace (that is, a subspace of
dim(n − 1) of the original vector space) that linearly
separates the training data into positive and negative
examples.

This is an important contribution because it repre-
sents concepts (in this case, classes of negative and pos-
itive examples) as regions in the vector space, not just
as individual points. Another way of obtaining regions
in the space is to build them using quantum disjunc-
tions. As semantic vector models approach maturity, it
will be crucial to solve this problem of regional repre-
sentation, so that (for example) we can model the fact

that apples are a kind of fruit, rather than just mod-
elling the fact that apples and fruit have something to
do with one another.

Tensor Products
One objection that theoretical linguists may have to all
of the above methods is that they give ways of measur-
ing similarity, ranking, or classifying individual objects.
But language is known to have considerable hierarchical
and recursive structure. How could one possibly repre-
sent something like a traditional parse-tree as a single
point or region in a vector space?

Tensor products and multilinear algebra are one an-
swer to this question. The tensor product may be de-
fined in terms of multilinear maps (Fulton & Harris
1991, Appendix A), though a simpler initial intuition
can be obtained by a matrix description: if the vector
x has coordinates xi and the vector y has coordinates
yj then the tensor product x ⊗ y is represented by the
matrix whose ijth entry is xiyj (Plate 2003, §2.4.3).
For those more familiar with the Dirac bra-ket nota-
tion, this tensor wold be written |x〉〈y|, where 〈y| is the
adjoint vector of |y〉.

Just as there are matrices which cannot be formed
by taking the outer product of two individual vectors,
there are tensors that cannot be obtained as the tensor
product of two individual vectors. This gives rise to
a formulation of the phenomenon known as quantum
entanglement (Rieffel 2007).

Tensor products are comparatively little known in
computational linguistics and artificial intelligence,
though their use was initially advocated by Smolen-
sky (1990). Recent interest in tensor products includes
the work of Clark and Pulman (2007), who propose the
use of tensor products to combine the benefits of sym-
bolic and distributional models of meaning, very much
the research goal we are following here. As pointed out
by Rieffel (2007), tensor products are as much a part
of classical probability theory as they are of quantum
theory, since they are the correct space for forming the
joint probability distribution of two distributions.

Tensor products can be composed recursively, and
can therefore be used to model hierarchical struc-
tures. This has been demonstrated in a small artificial
wordspace by Aerts and Czachor (2004).

Convolution Products and Holographic
Reduced Representations
One of the objections to the use of tensor products (and
equally for joint probability distributions) is that the
number of dimensions increases exponentially with the
number of spaces joined. It is reasonable that a seman-
tic representation of a sentence should consume more
space in memory than that of a single term, and that
a long document should take more space than a single
sentence. However, there are good practical and the-
oretical reasons for believing that this representation
should scale no more than linearly in the length of the
document.



A variety of product operations have been proposed
that are effectively compressed tensor product oper-
ations. The most thorough summary is given by
Plate (2003) in his description of Holographic Reduced
Representations, or HRRs. A predecessor of HRRs is
the convolution product, formed by adding the diago-
nals of a matrix representation of a tensor product. If
v and w are of dimension n, it follows that conv(v, w)
is of dimension 2n + 1. HRRs are formed by taking
this projection a step further: each diagonal is wrapped
round, effectively summing the kth and k + nth entries
of the convolution product to give a HRR product of
dimension n. Plate used HRRs to model semantic com-
position in a number of simulated and hand-built exper-
iments.

Two Small Experiments
In this section we present two experiments in the use
of vector composition to model semantic composition.
Though the experiments themselves are small, they
were performed using vectors from large empirical se-
mantic vector spaces built using the 100 million word
British National Corpus1 and the Infomap NLP soft-
ware2, which uses singular value decomposition to cre-
ate a reduced wordspace from a large cooccurrence
matrix (Widdows 2004, Ch 6). The number of dimen-
sions used in the reduced space was 100. For clarity, we
should stress that the word vectors used in these exper-
iments were hand-picked for investigation (though they
were not cherry-picked for good results). There is no
claim as yet that these results are representative or im-
mediately generalizable. The methods described here
still leave much scope for empirical exploration, and we
are not yet in a position (nor do we wish) to fasten our
colours to a particular statistical evaluation.

Relations between Cities and Countries
The first experiment investigated the use of vector prod-
uct operations to encode relationships between cities
and the countries that contain them. As a test dataset,
vectors for 10 capital cities and the corresponding coun-
tries were collected, giving 20 vectors altogether. The
experiment attempted to produce some kind of query
expression and similarity function so that a capital city
could be used as a query and retrieve the country it is in.
As a baseline case, the other 19 vectors were sorted by
their cosine similarity with the test city. As a composi-
tional test, the query was primed with the seed relation
moscow - russia. That is, instead of just finding vectors
similar to a city v, we find vectors w whose relationship
with v is similar to the relationship between moscow
and russia. The compositional methods tested were the
tensor product and convolution similarities, using the
naturally induced similarity functions on these objects.

The results were varied. For many of the capital /
country pairs (e.g., berlin - germany, dublin - ireland,

1http://www.natcorp.ox.ac.uk/
2http://infomap-nlp.sourceforge.net/

washington - usa, the straight (unprimed) vector simi-
larity was the strongest association. However, in some
cases the straight vector similarity was not so strong,
particularly in the case of london - britain. In this case,
britain was 13th out of 20 in the results. We suspect
this is because london and britain both occur frequently
in the British National Corpus, in contexts where they
are not strongly associated with each other (i.e., where
one term occurs and the other does not). For the task
of using the query london to find the result britain, the
tensor product ranking moved britain up to the fourth
place in the list, and the convolution product ranking
moved it straight to the top. This result proved to
be quite reliable for the tensor product, in that seed-
ing the search with other relation pairs (e.g., paris -
france) demonstrated similar improvement. The con-
volution product appeared less predictable, with some
seed relations producing better results and some pro-
ducing worse ones.

One preliminary conclusion from this experiment
(which we may have expected) is that for rarely occur-
ring and strongly correlated terms, simple vector sim-
ilarity is likely to associate them strongly. However,
for relatively common terms with a relationship that
is not always expressed, using a seed relation to prime
a search that uses a vector composition operation may
be more effective. This may be a new lead in the chal-
lenge proposed by Bruza et al. ((Bruza & Cole 2005),
(Widdows & Bruza 2007)) of predicting from the med-
ical literature that the relationship between Reynaud’s
syndrome and fish oil was significant, in spite of their
lack of immediate cooccurrence.

It is also important to note that building a tensor
product |v〉〈w| using a single relationship between |v〉
and |w〉 gives an unentangled representation, so unless
we use more than one training example, the results can
be expressed as products of individual scalar products
(as described by Clark and Pulman (2007), see also the
next experiment below).

Similarity Between Verb-Noun Pairs
This experiment was designed to compare the sensitiv-
ity of different product operations and similarity mea-
sures for modelling functional composition, particularly
the composition of verb-noun pairs, where the verb was
a transitive verb and the noun was in the object posi-
tion / patient role of the verb. The intuition behind this
experiment is that, for many verb-noun pairs, changing
one of the constituents completely changes the meaning
or intent of the phrase. Even if one argument remains
unchanged, the resulting phrase may be completely dif-
ferent or even nonsensical, even though the two phrases
may be deemed to be at least “50% similar” in a superfi-
cial sense. As a simple example, consider the sentences:

(i.) I eat an apple.
(ii.) I eat a tomato.
(iii.) I throw an apple.



Whatever the individual similarities between eat,
throw, apple and tomato, we would like to be able to pre-
dict that eating a tomato is relatively similar to eating
an apple, whereas throwing an apple is quite different.

Since the BNC comes with part-of-speech tags pro-
vided by the CLAWS tagger (Leech, Garside, & Bryant
1994), it is easy to build a wordspace which distin-
guishes between words with the same orthographic form
but different parts of speech (e.g., fire nn1 and fire vvi).
This was done, and vectors for a handful of verbs and
nouns were collected as shown in Table 2. The words
were then arranged into verb-noun pairs (with some
noun-verb pairs as an extra test).

Composed vector expressions were created for each of
these pairs, using the vector sum, the direct product,
and the tensor product. The natural similarity opera-
tion on the direct product is defined by v1⊕w1·v2⊕w2 =
v1 · v2 + w1 · w2 (we divided by 2 to take the average).
The natural similarity operation on non-entangled ten-
sor products, (v1 ⊗ v2) · (w1 ⊗ w2), can be written
as the product of the similarities of the constituents,
(v1 · w1) × (v2 · w2). As is standard with multiplying
similarity scores, this guarantees that weak links in the
chain have a great effect on the outcome.

The results in Table 2 show that the tensor product
representation / product of similarity measures does the
best job at recognizing unlikely combinations. For ex-
ample, both of the other two measures use the strong
similarity between earn vvi and pay vvi to infer that
earning money and getting paid in apples have a lot in
common: the tensor product similarity recognizes these
as being completely dissimilar. (The raw scores them-
selves are not necessarily comparable between columns,
since we have made no attempt to normalize the mea-
sure with respect to one another: the significant data
is in the comparison of scores in the same column for
different rows.)

Note that this experiment is biased to some extent:
we know in advance that the simple vector sum is a
commutative operation, and the direct sum and tensor
product are not, and so we already know that the vector
sum is going to perform poorly on any test where the
similarity measure is expected to notice that the order
of inputs has been changed. However, we can say with
some confidence that, in situations where the words in a
sentence can be tagged and perhaps assigned to differ-
ent semantic roles, a similarity between tensor products
is likely to represent linguistic similarity more faithfully
than one that performs a single “bag of words” vector
sum. Since part of speech tagging is today standard,
and semantic role labelling is being intensively studied,
these premises are becoming increasingly reasonable.

Conclusions and Future Work
Modelling composition of meaning is a crucial challenge
in natural language processing. There are many com-
positional operations in language, and any successful
project should pay close attention to which of these op-
erations is being modelled.

Given the success of semantic vector models at many
NLP tasks, it would seem particularly appropriate to
investigate semantic compositionality in these mod-
els, though this has been studied comparatively little.
There are many well-known mathematical operators on
vectors that may be used for these purposes, many of
which are well-known and heavily used in quantum me-
chanics.

We have summarized many of these operators, partly
in the hope that gathering these descriptions into a sin-
gle paper will enable researchers to more readily com-
pare the different options and design experiments. We
have performed some initial experiments that show that
in at least some cases, composition operators can en-
able better modelling of similarities and relationships.
We believe that this field is ripe for further develop-
ment, and that contributing to a shared toolkit for
researchers will expedite this development. To these
ends, we have released tools for creating and explor-
ing wordspace models through the Semantic Vectors
project, which is hosted at http://code.google.com/
p/semanticvectors (Widdows & Ferraro 2008).
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