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Abstract. In this paper, we investigate the ability of the Predication-based Se-
mantic Indexing (PSI) approach, which incorporates both symbolic and distribu-
tional information, to support inference on the basis of structural similarity. For
example, given a pair of related concepts prozac:depression, we attempt to iden-
tify concepts that relate to a third concept, such as schizophrenia in the same way.
A novel PSI implementation based on Kanerva’s Binary Spatter Code is devel-
oped, and evaluated on over 100,000 searches across 180,285 unique concepts
and multiple typed relations. PSI is shown to retrieve with accuracy concepts on
the basis of shared single and paired relations, given either a single strong exam-
ple pair, or the superposition of a set of weaker examples. Search space size is
identical for single and double relations, providing an efficient means to direct
search across predicate paths for the purpose of literature-based discovery.

Keywords: Distributional Semantics, Vector Symbolic Architectures, Literature-
based Discovery, Abductive Reasoning

1 Introduction

This paper presents new results that demonstrate ways in which high-dimensional vec-
tor representations can be used to model proportional analogies such as “prozac is to
depression as what is to schizophrenia?” Our approach is based on our earlier “Logical
Leaps” work [1], and Kanerva’s work on hyperdimensional computing and analogical
mapping [2] (both presented at Quantum Informatics, 2010). This approach depends
upon being able to represent concepts as high-dimensional vectors, and relationships
between concepts as mathematical operations on these vectors. Such operations include
composition of vectors using product and superposition operations, and the selection of
nearby pure concepts from a superposed or product state. The work is part of the family
of generalized quantum methods currently being explored: basic concepts are analogous
to pure states; superposition and product operations give rise to compound concepts
analogous to mixed and entangled states; and the selection of a nearby known con-
cept from a product state is analogous to quantization or quantum collapse. A notable
departure from traditional quantum mechanics is our use of real and binary vectors,
instead of complex vectors. This departure is not novel and is an oft-understated dis-
crepancy of approaches: for many years the information retrieval and machine learning
communities have used real-valued vectors; Kanerva’s work uses binary-valued vectors



as examples [2]; and traditional quantum mechanics almost exclusively used complex
Hilbert spaces, as have emerging approaches to information retrieval [3] and distribu-
tional semantics [4]. We mention this at the outset as perhaps one of the key senses
in which “generalized quantum” models should be thought of as generalizations, not
applications, of quantum physics.

2 Background

The “Logical Leaps” approach is an extension of our previous work in the domain
of literature-based discovery [5], in which we evaluated the ability of various scal-
able models of distributional semantics to generate indirect inferences [6], meaningful
connections between terms that do not co-occur in any document in a given corpus.
Connections of this sort are fundamental to Swanson’s model of literature-based dis-
covery [7], which emerged from the serendipitous discovery of a therapeutically useful
[8] connection between Raynaud’s Syndrome (reduced blood flow in the extremities)
and fish oils. This connection was based on the bridging concept “blood viscosity”:
fish oil can decrease blood viscosity thus increasing blood flow. Swanson’s method can
be seen as an example of abductive reasoning, hypothesis generation as proposed by
Peirce (see [9]), and provides the basis for several computer models that aim to facil-
itate discovery [10], [11]. As an alternative to stepwise exploration of the vast search
space of possible bridging concepts and discoveries, distributional approaches such as
Latent Semantic Analysis [6], Random Indexing (RI) [12] and others have been applied
to infer meaningful indirect connections between terms without identifying a bridging
concept [13], [14], [5]. In contrast to these approaches, which are based on general as-
sociation strength, “Logical Leaps” are derived from a vector space in which both the
target and the type of a relation to a concept are encoded into its vector representation.
This has been achieved using Predication-based Semantic Indexing (PSI) [15], a variant
of RI that uses permutation of sparse random vectors to encode relationships (such as
TREATS) between concepts into a high-dimensional vector space. In this paper, we
attempt to direct searches in PSI space by specifying predicate paths using a pair of
example concepts. We achieve this end with an alternative implementation of PSI based
on Kanerva’s Binary Spatter Code which we introduce in the following section.

3 Mathematical Structure and Methods

The methods in this paper all use high-dimensional vectors to represent concepts. There
are many ways of generating such representations. Ours is based upon the RI paradigm
using terminology as described in [5], in which semantic vectors are built as superpo-
sitions of randomly generated elemental vectors, derived by training over a corpus of
documents. Throughout this paper we will write E(X) and S(X) for the elemental and
semantic vectors associated with the concept X. In addition to concept vectors, we in-
troduce vectors for relations. For example, E(R) would denote the elemental vector for
the relation R. Many relationships are directional, and we will use Rinv to denote the
inverse of R, so that A R B and B Rinv A carry the same external meaning (though they
may in some cases be represented by different vectors).



Kanerva’s Binary Spatter Code [16] provides the means to encode typed relations
into a high-dimensional binary vector space. The Spatter Code is one of a group of
representational approaches collectively known as Vector Symbolic Architectures [17]
(VSAs), which originated from Smolensky’s tensor product based approach [18], and
include Holographic Reduced Representations (HRRs) [19] amongst others. VSAs dif-
fer from earlier connectionist representations as they allow for the encoding of typed
relations and nested compositional structure. Most of the definitions given below work
for VSAs in general. However, we make particular use of VSAs with binary-valued
vectors and component-wise exclusive or (XOR) as the binding operation: this has the
special property of being its own inverse, which the reader should not assume for other
implementations.

The primary operations facilitated by VSAs are binding and bundling. Binding is
a multiplication-like operator through which two vectors are combined to form a third
vector C that is dissimilar from either of its component vectors A and B. We will use the
symbol “⊗” for binding, and the symbol “�” for the inverse of binding throughout this
paper. Be aware that binding may have different implementations in different models,
and is not meant to be identified with the tensor product. It is important that this operator
be invertible: if C = A ⊗ B, then A � C = A � (A ⊗ B) = B. In some models, this
recovery may be approximate, but the robust nature of the representation guarantees
that A � C is similar enough to B that B can easily be recognized as the best candidate
for A � C in the original set of concepts. Thus the invertible nature of the bind operator
facilitates the retrieval of information encoded during the binding process. While this
operator varies across VSAs, it results in a product that is of the same dimensionality
as the component vectors from which it was derived, unlike the tensor product which
has the dimensionality of its component vectors squared. When XOR is used, binding
commutes: A ⊗ B = B ⊗ A.

Bundling is an addition-like operator, through which superposition of vectors is
achieved. For example, vector addition followed by normalization is commonly em-
ployed as a bundling operator. Unlike binding, bundling results in a vector that is max-
imally similar to its component vectors. We will write the usual “+” for bundling, and
the computer science “+=” for “bundle the left hand side with the right hand side and
assign the outcome to the symbol on the left hand side.” So for example, S(A) +=
E(B) means “increment the semantic vector for A by the elemental vector for B using
the bundling operator.” This in particular is a very standard operation in training.

In the case of the spatter code, XOR is used as a binding operator. As it is its own
inverse, the binding and decoding processes are identical (⊗=�). For bundling, the
spatter code employs a majority vote: if the component vectors of the bundle have more
ones than zeros in a dimension, this dimension will have a value of one, with ties broken
at random (for example, bundling the vectors 011 and 010 may produce either 010 or
011). Once a vector representation for a concept has been built up by binding and/or
bundling, it is possible to apply an operator that reverses the binding process to the
vector as a whole.

The XOR operator used in the spatter code offers an apparent advantage over the
original permutation-based implementation of PSI: both concepts and relations are rep-
resented as high-dimensional binary vectors. This suggests relatively simple ways to



direct search across predicate paths of interest, such as those that have been shown
useful for literature-based discovery [20]. For example, the “ISA-TREATSinv” path,
which may identify conditions treated by the class a drug belongs to, can be specified
as “S(prozac) � E(ISA) ⊗ E(TREATSinv).” To explore the potential advantages of
this formulation, we generated a binary implementation of PSI. This differs from our
previous implementation in several ways, summarized in Table 1.

Table 1: Comparison between real vector and binary vector implementation of PSI

Implementation Real/Permutation-based Binary

Semantic vectors S(X) Real vectors (d = 500) Binary vectors (d = 16,000)

Elemental vectors E(X) Sparse ternary Dense binary

Represent predicate R Assign permutation PR Assign elemental vector E(R)

Reversed predicates Rinv
Use natural inverse P−1

R

Assign new elemental vector
E(Rinv)

Encoding / training of
relationship X R Y

S(X) += PR(E(Y))
S(Y) += P−1

R (E(X))
S(X) += E(R) ⊗ E(Y)
S(Y) += E(Rinv) ⊗ E(X)

Superposition Vector addition Majority vote

We are now in a position to describe our core algorithm for building the binary PSI
space used in our experiments throughout the rest of this paper. The procedure is as
follows:

1. Assign an elemental vector E(X) to each concept X that occurs 100,000 times
or less in the database. More frequent concepts are excluded as they tend to be
uninformative, approximating use of a stop-word list. Elemental vectors are 16,000-
dimensional binary vectors with a 50% chance of a one or zero in each position.

2. Assign an elemental vector E(R) to each predicate type R excluding negations
and the PROCESS OF predicate,5 which has shown to be uninformative. In most
cases, two vectors are assigned, one for each direction of the predicate R and Rinv,
to distinguish between the roles of the concepts involved. For a small number of
symmetric predicate types, such as COEXISTS WITH, only one vector is as-
signed. Note that this process differs from the original implementation using per-
mutations as operations, since each permutation P has a natural distinct inverse
P−1. This is not the case for the current implementation, since XOR is its own
inverse. In addition we assign a vector “GA” to represent general association.

3. Assign a semantic vector to each concept occurring 100,000 or fewer times. In
this implementation, semantic vectors contain 16,000 real-valued variables, ini-
tially set to zero. These keep track of votes in each dimension to facilitate bundling.

4. Statistical weighting is applied to accentuate the influence of infrequent terms.
Inverse document frequency (idf) is calculated for concepts and predicates, and ap-
plied during encoding such that general associations are weighted according to the
idf of the concept concerned, while specific (typed) relations are weighted accord-

5 This predicate occurs in predications such as ”tuberculosis PROCESS OF patient” which
would create an uninformative link between most human diseases.



ing to the sum of the idfs of the concept and the predicate concerned. Consequently,
specific relations are weighted more heavily than general relatons.

5. Process the predications a concept occurs in: each time a concept occurs in a
predication, add (bundle) to its semantic vector the elemental vector for the other
concept in the predication bound with the elemental vector for the predicate con-
cerned. For example, when the concept fluoxetine occurs in the predication “flu-
oxetine TREATS major depressive disorder (MDD),” we add to S(fluoxetine) the
elemental vector for TREATS bound with the elemental vector for MDD. We also
encode general association by bundling the elemental vector for MDD bound with
the elemental vector for general association (GA), ensuring that two concepts re-
lating to the same third concept will have similar vectors, even if they relate to
it in different ways. In symbols, we have that S(fluoxetine) += E(TREATS)
⊗ E(MDD) + E(GA) ⊗ E(MDD).

The PSI space was derived from a set of 22,669,964 predications extracted from cita-
tions added to MEDLINE over the past decade by the SemRep natural language pro-
cessing system [21], which extracts predications from biomedical text using domain
knowledge in the Unified Medical Language System [22]. For example, the predication
“fluoxetine TREATS MDD” is extracted from “patients who have been successfully
treated with fluoxetine for major depression.” In a recent evaluation of SemRep, Kil-
icoglu et al. report .75 precision and .64 recall (.69 f-score) [23].

4 Analogical Retrieval

Now that we have built our PSI space, we can use it to search for relations and analogies
of concepts as described in the abstract and introduction. The process for performing
this search in predication space is similar to Kanerva’s XOR-based analogical mapping
[2]. Consider the vectors S(fluoxetine) and E(MDD):

S(fluoxetine) = E(MDD) ⊗ E(TREATS) + E(MDD) ⊗ E(GA)

S(fluoxetine) � E(MDD) = E(MDD) � E(MDD) ⊗ E(TREATS)

+E(MDD) � E(MDD) ⊗ E(GA)

= E(TREATS) + E(GA)

When encoding many predications, the result will be a noisy version of this vector,
which should be approximately equidistant from E(TREATS) and E(GA). Therefore
we would anticipate being able to search for the treatment for schizophrenia, for ex-
ample, by finding the semantic vector that is closest to the vector “S(fluoxetine) �
E(MDD) ⊗ E(schizophrenia).” This search approximates the single-relation analo-
gies that occur as questions in standardized tests such as the SAT, and have been the
focus of recent evaluations of distributional models that estimate relational similarity
(eg. [24]). However, useful predicate paths, such as the ISA-TREATSinv example, of-
ten involve more than one relation. The mathematical properties of the binary PSI space
suggest that a similar approach can also be used to search across two relations. Consider
the following steps that occur during generation of the binary PSI space:

S(amoxicillin) += E(antibiotics) ⊗ E(ISA)



S(streptococcal tonsilitis) += E(antibiotics) ⊗ E(TREATSinv)

S(prozac) += E(fluoxetine) ⊗ E(ISA)

S(MDD) += E(fluoxetine) ⊗ E(TREATSinv)

Assuming for the sake of simplicity that these are the only encoding operations that
have taken place, an example cue could be generated as follows:

S(amoxicillin) � S(streptococcal tonsilitis)

= E(ISA) ⊗ E(antibiotics) � E(antibiotics) ⊗ E(TREATSinv)

= E(ISA) ⊗ E(TREATSinv)

S(MDD) � S(amoxicillin) � S(streptococcal tonsilitis)

= E(fluoxetine) ⊗ E(TREATSinv) � E(TREATSinv) ⊗ E(ISA)

= E(fluoxetine) ⊗ E(ISA)

= S(prozac)

Table 2 illustrates analogical retrieval with single and dual predicates. For single pred-
icates (top three examples), the cue is constructed by combining E(schizophrenia)
with the elemental and semantic vector of a pair of concepts, using XOR. The nearest
semantic vector to this composite cue is in all cases related to schizophrenia by the
same relation that links the example pair: emd 57445 is an experimental treatment for
schizophrenia [25], syngr1 is a gene that has been associated with it [26], and certain
mannerisms are relevant to the diagnosis of schizophrenia.

Table 2: Schizophrenia-related searches, single- (top 3) and dual-predicate (bottom 3).
MDD=Major Depressive Disorder. Scores indicate 1−normalized hamming distance.

Example pair Nearest predicate Nearest neighboring
semantic vector

S(fluoxetine) � E(MDD) E(TREATS) 0.56 S(emd 57445)

S(apolipoprotein e gene)
�E(alzheimer′s disease)

E(ASSOCIATED WITH) 0.76 S(syngr1)

S(wheezing) � E(asthma) E(DIAGNOSES) 0.63 S(mannerism)

S(prozac) � S(MDD) E(ISA) ⊗ E(TREATSinv) 0.54 S(mazapertine succinate)

S(diabetes mellitus)�
S(blood glucose fluctuation)

E(TREATSinv)⊗
E(CAUSESinv) 0.55 S(impaired job

performance)

S(chronic confusion) �
S(alzheimer′s disease)

E(ISA) ⊗
E(COEXISTS WITH) 0.76

S(acculturation
difficulty)

In the case of dual predicates (bottom three examples), the cue is constructed by
combining the semantic vector for schizophrenia with the semantic vectors for a pair
of concepts, using XOR. Depression is treated by antidepressants such as prozac. Sim-
ilarly, schizophrenia is treated by antipsychotic agents, such as mazapertine succinate.
Blood glucose fluctuation is a side effect of diabetic treatment, as impaired work per-
formance is a side effect of drugs treating schizophrenia. Finally, chronic confusion
occurs in dementias such as Alzheimer’s, as acculturation difficulty occurs in psychotic
disorders such as schizophrenia.



4.1 Evaluation

To evaluate the single-predicate approach, we extracted a set of test predications from
the database using the following procedure. Firstly, a set of candidate predicates was
selected. Only predicates meeting the previously-listed constraints for inclusion in our
vector space model that occurred one thousand or more times in the data set were con-
sidered, leaving a total of 37 predicate types (such as DIAGNOSES). For each of these
predicates, fifty predications were randomly selected taking into account the strength of
association between the example pair (e.g. S(wheezing) � E(asthma)) and the predi-
cate (e.g. E(DIAGNOSES)) such that ten examples were obtained for each predicate
that fell into the following ranges of association strength: 0.5211-0.6, 0.61-0.7, 0.71-
0.8, 0.81-0.9, 0.91-1.0. We sampled in this manner in order to test the hypothesis that
better examples would have a stronger cue-to-predicate association strength, and ex-
cluded any example pairs in which this association was less than 0.5211, a value 5SD
above the median similarity between a set of 5000 random vectors. Only predicates in
which ten examples in each category could be found were tested, resulting in a test
set of 1400 predications, fifty per eligible predicate (n=28). For each predicate, every
example was tested against every other example pair (n=49) using three approaches
summarized in Table 3. 68,600 searches were conducted with each approach. In each
case, the nearest semantic vector (e.g. S(mannerism)) to the composite cue vector (e.g.
S(wheezing) � E(asthma) ⊗ E(schizophrenia)) was retrieved, and tested for occur-
rence in a predication with the object of the second pair (e.g. schizophrenia), and the
same predicate as the example pair (e.g. DIAGNOSES).

To evaluate the paired-predicate approach, we selected fourteen relationship pairs
representing predicate paths of interest, including our recurring ISA-TREATSinv ex-
ample, and pairs such as INHIBITS-CAUSESinv that are of interest for literature-
based discovery [20]. For each pair, we extracted sixty example concept pairs by first
selecting for each subject (e.g. prozac) occurring in a relationship of the first type (e.g.
ISA) the bridging term (e.g. fluoxetine) and object (e.g. MDD) of the second relation-
ship (e.g. TREATSinv) with the strongest cue-to-predicate-pair association (similar-
ity between S(prozac) � S(MDD) and E(ISA) ⊗ E(TREATSinv)). This constraint
ensured that it was possible to obtain an adequate number of examples at each cue-to-
predicate-pair threshold level. These strongly associated paths were sampled at random,
such that sixty example pairs were drawn for each predicate pair, with twenty of these
occurring in each of the threshold levels 0.5211-0.6, 0.61-0.7, 0.71-1.0.

Each elemental predicate vector was bound to every other predicate vector, to gener-
ate a set of 5,929 paired predicate vectors, such as E(TREATSinv) ⊗ E(ISA), to use
for the dual-relation equivalent of the 2-STEP procedure. This and other procedures
used to generate cues for this experiment are shown in Table 3. The major difference
from the single-relation approach is the use of the semantic vector for both subject and
object of the example pair to generate the cue. Also, the general association step does
not require binding, as we would anticipate the semantic vectors for two objects asso-
ciated with the same subject being similar once constructed. Each of the example pairs
(n=60) for each predicate pair was tested with the object of every other example pair in
the set (n=59), for a total of 49,560 searches per method.



Table 3: Approaches to cue vector generation. sub1, obj1 = subject and object from example
pair. Obj2 = test object. E(pred nearest) = nearest predicate vector ((1) single-predicate) or bound
predicate vectors ((2) dual-predicate) to bound example pair. GA = general association

Method Bound cue vector Example

1-STEP (1) S(sub1)�E(obj1)⊗E(obj2) S(fluoxetine) � E(MDD)
⊗ E(schizophrenia)

2-STEP (1) E(pred nearest) ⊗ E(obj2) E(schizophrenia) ⊗ E(TREATS)

GA (1) E(GA) ⊗ E(obj2) E(GA) ⊗ E(schizophrenia)

1-STEP (2) S(sub1)�S(obj1)�S(obj2) S(prozac) � S(MDD) � S(schizophrenia)

2-STEP (2) E(pred nearest) � S(obj2) E(ISA) ⊗ E(TREATSinv)
� S(schizophrenia)

GA (2) S(obj2) S(schizophrenia)

Approaches to cue generation are summarized in Table 3. The generated cues are
intended to be similar to the vector representation of the concept (or concepts) provid-
ing a solution to an analogical problem of the form sub1 is to obj1 as what is to obj2?
1-STEP cue generation binds the example pair to the target object directly. The 2-STEP
approach first finds the nearest predicate vector (single predicates) or bound predicate
vectors (dual predicates) to the example pair, and then binds this to the target object.
The store of predicate vectors here acts as a “clean-up memory” (Plate 1994 [19], pg
101), removing noise from the approximate representation of the predicate (or pair of
predicates) retrieved from the example pair. Finally, as a control, we retrieve the con-
cept that our model associates most strongly with the object when the relation type is
not considered (General Association, GA). As an additional control, we repeated both
experiments while searching the space of elemental vectors using the elemental vector
for the test object, to provide a random baseline. As this failed to produce any correct
mappings in the vast majority of cases, the results are not shown.

4.2 Results

The results of the single predicate experiment are shown in Fig. 1 (left). The y-axis
shows the mean number of test cases in which the retrieved concept occurred in a pred-
ication with the test target in which the predicate matched that linking the example pair.
Both the 1-STEP and 2-STEP approaches are sensitive to the strength of association
between the example pair and the predicate that links them. As might be expected, an
intermediate step utilizing clean-up memory improves performance in the 2-STEP ap-
proach, particularly as the cue-to-predicate association drops. These results show that
an example concept pair can be used to prime search to retrieve concepts that are related
to a cue concept in a particular way, with (2-STEP) or without (1-STEP) retrieving a
representation of the relationship concerned. This approach is particularly effective with
example pairs that have a strong association to the representation of the predicate of in-
terest. The GA approach retrieves a correct mapping less frequently, and is not sensitive
to cue-to-predicate association.
Fig. 1 (right) shows the results of the dual-predicate experiment, which are similar
to those for single-relation searches: at stronger cue-to-predicate associations, correct



Fig. 1: Analogical retrieval: single (left) and dual (right) predicates. Error bars = standard error.

mappings are found in most cases, whereas with cue-to-predicate associations closer to
those anticipated between randomly generated vectors, performance falls. This drop in
performance is mitigated to some extent by the use of the 2-STEP approach, in which
clean-up memory is used to obtain the original vector representation of the paired rela-
tionship concerned. The GA approach is less effective here. While these results do indi-
cate search-by-example is effective in certain cases, the constraint that cue-to-predicate
strength should fall in the upper strata limits this approach to a small set of example
cues. For example, in the case of the ISA-TREATSinv predicate pair, the distribution
of cue-to-predicate associations in the set (n=114,658) from which our example cues
were sampled (which itself included only the best example for each subject) skews left-
ward, with a median association strength of 0.522. A similar distribution was observed
for single-predicate cues. It is possible to compensate for this using the 2-STEP ap-
proach, but this is not ideal for paired relations: with r relations the 2-STEP approach
requires searching through r2 possible predicate pairs. However, as each weak example
should have some association with the desired path, we would anticipate the superpo-
sition of several weak examples generating a vector with a stronger cue-to-predication-
path strength than any of its components. To evaluate this hypothesis, we generated a
second set of example pairs for the ISA-TREATSinv predicate path. These examples
were drawn from the aforementioned set, with the inclusion criterion that their cue-to-
predicate association must fall in the weakest category (0.5211 - 0.6). For each example,
we measured the cue-predicate association of the example pair (S(sub1)�S(obj1)). As
we added new examples, we also measured the association strength between the super-
position of all examples up to this point (S(sub1)�S(obj1)+. . .+S(subn)�S(objn))
and the desired predicate (E(ISA) ⊗ E(TREATSinv)).

The results of this experiment are shown in Fig 2 (left), which shows a rapid rise in
cue-to-predicate strength (solid line) as weak examples are added to the superposition.
The strength of this association quickly exceeds the cumulative mean (dashed line) as-
sociation strength of all of the examples added up to that point (individual dots). As
shown in Fig. 2 (right), this effect is also observed with respect to performance on the
ISA-TREATSinv test examples (n=60). This is a particularly important result from the
“generalized quantum” point of view. We have used repeated binding and bundling to
create a superposition of compound systems that has not been (and probably cannot be)
represented as a product of two individual simple systems. In the quantum literature,
this phenomenon is known as “entanglement”. Thus our experiments demonstrate that



several weak example relationships can be superimposed to obtain an entangled repre-
sentation of the typed relation which is a much more accurate guide for inferring new
examples.

Fig. 2: Superposition: cue-predicate association (left), correct mappings (right).

5 Discussion

In this paper, we show that relational similarity emerges as a natural consequence
of the PSI approach. This similarity is sufficient to solve proportional analogy prob-
lems stretching across one and two relations, given either a strong example with well-
preserved similarity to the relation(s) of interest, or a set of weaker examples. These
findings are pertinent to our ongoing research in the area of literature-based discov-
ery and abductive reasoning. Previously, we have discussed various forms of abductive
reasoning and constraints operative in such reasoning, and proposed that similarity of
some kind is often of importance in finding a link between a starting point of an inquiry
and fruitful novel connection to the starting point [27]. The associations are usually
weak and indirect, but likely critical in making the connection. Analogy is one form of
such indirect connection. An analogy and the starting point have relationships in com-
mon [28] so presumably finding cases of common relations is at the heart of analogy
retrieval. There have been several implementations of vector encoding to accomplish
analogical reasoning [29], [30]. These modeling efforts aim to address several aspects
of analogical reasoning: retrieving potential analogies, mapping the elements of the po-
tential target analogy to the elements of the starting point, and making inferences about
the starting point from the target analogy. Our goals are more modest in some respects
and more ambitious in others. We are initially only concerned with retrieving potential
analogies, but we aim to do this on a large scale using large numbers of predications
that have been automatically extracted from the biomedical literature, while most of the
models of analogies have worked with small sets of custom-constructed predications re-
lating to a few stories. Through analogical retrieval, we are able to direct search across
predicate paths that have been shown to be useful for literature-based discovery [20],
without incurring an exponential increase in the size of the search space when more
than one relationship is considered. The facility for search of this nature is an emer-
gent property of the PSI model: candidates for retrieval are identified on the basis of
their similarity to a vector representing a novel relation type, composed from elemen-



tal relations during the process of model generation. An approximation of this vector
is inferred from the superposition of a set of example pairs, providing an efficient and
accurate mechanism for directed search.

6 Conclusion

In this paper, we show that accurate example-based analogical retrieval across single
and dual-predicate paths emerges as a natural consequence of the encoding of typed
relations in high-dimensional vector space. Given a suitable example pair, or set of
less suitable example pairs, it is possible to retrieve with accuracy concepts that relate
to another concept in the same way as the concepts in the example pair relate to one
another, even if this relationship involves two relations and a third bridging concept.
In the case of dual relations, search is achieved without the need to retrieve either the
bridging concept or the relations involved. The size of the search space does not increase
when dual-relation paths are sought, providing an efficient means to direct predication-
based search toward pathways of interest for literature-based discovery.

7 Acknowledgements

This research was supported in part by the US National Library of Medicine grant
(R21LM010826-01). The authors would also like to acknowledge Google, Inc. for their
support of author DW’s ongoing research on the subject.

References

1. T. Cohen, D. Widdows, R. W. Schvaneveldt, and T. C. Rindflesch.: “Logical leaps and quan-
tum connectives: Forging paths through predication space.” in AAAI-Fall 2010 Symposium
on Quantum Informatics for Cognitive, Social, and Semantic Processes November, pp. 1113,
2010.

2. P. Kanerva.: “Hyperdimensional computing: An introduction to computing in distributed
representation with high-dimensional random vectors.” Cognitive Computation, vol. 1, no.
2, pp. 139-159, 2009.

3. C. J. Van Rijsbergen “The Geometry of Information Retrieval.” Cambridge University Press,
2004.

4. L. De Vine and P. Bruza.: “Semantic Oscillations: Encoding Context and Structure in Com-
plex Valued Holographic Vectors.” Quantum Informatics for Cognitive, Social, and Semantic
Processes (QI 2010), 2010.

5. T. Cohen, R. Schvaneveldt, and D. Widdows.:“Reflective Random Indexing and indirect in-
ference: A scalable method for discovery of implicit connections.” Journal of Biomedical
Informatics, vol. 43, no. 2, pp. 240-256, Apr. 2010.

6. T. K. Landauer and S. T. Dumais.: “A solution to Plato’s problem: The latent semantic analy-
sis theory of acquisition, induction, and representation of knowledge.” Psychological Review,
vol. 104, pp. 211-240, 1997.

7. D. R. Swanson.: “Two Medical Literatures that are Logically but not Bib-liographically Con-
nected.” Prog Lipid Res, vol. 21, p. 82, 2007.

8. R. A. DiGiacomo, J. M. Kremer, and D. M. Shah.: “Fish-oil dietary supplementation in
patients with Raynaud’s phenomenon: a double-blind, controlled, prospective study.” The
American journal of medicine, vol. 86, pp. 158-164, 1989.

9. C. S. Peirce.: “Abduction and Induction.” in J. Buchler (Ed.) Philosophical writings of Peirce,
New York: Routledge, 1940.



10. D. R. Swanson and N. R. Smalheiser.: “An interactive system for finding complementary
literatures: a stimulus to scientific discovery.” Artificial Intelligence, vol. 91, pp. 183-203,
1997.

11. M. Weeber, J. A. Kors, and B. Mons.: “Online tools to support literature-based discovery in
the life sciences.” Briefings in bioinformatics, vol. 6, no. 3, pp. 277-286, 2005.

12. P. Kanerva, J. Kristofersson, and A. Holst.: “Random indexing of text samples for latent
semantic analysis.” Proceedings of the 22nd Annual Conference of the Cognitive Science
Society, vol. 1036, 2000.

13. M. D. Gordon and S. Dumais.: “Using latent semantic indexing for literature based discov-
ery.” JASIS, vol. 49, pp. 674-685, 1998.

14. P. Bruza, R. Cole, D. Song, and Z. Bari.: Towards Operational Abduction from a Cognitive
Perspective, vol. 14. Oxford Univ Press, 2006.

15. T. Cohen, R. Schvaneveldt, and T. Rindflesch.: “Predication-based Semantic Indexing: Per-
mutations as a Means to Encode Predications in Semantic Space.” Proceedings of the AMIA
annual symposium, San Francisco., 2009.

16. P. Kanerva.: “Binary spatter-coding of ordered K-tuples.” Artificial Neural NetworksICANN
96, pp. 869-873, 1996.

17. R. W. Gayler.: “Vector Symbolic Architectures answer Jackendoff’s challenges for cognitive
neuroscience.” In Peter Slezak (Ed.), ICCS/ASCS International Conference on Cognitive
Science, pp. 133-138, 2003.

18. P. Smolensky.: “Tensor product variable binding and the representation of symbolic struc-
tures in connectionist systems.” Artificial intelligence, vol. 46, no. 1, pp. 159-216, 1990.

19. T. A. Plate.: Holographic Reduced Representation: Distributed Representation for Cognitive
Structures. CSLI Publications, 2003.

20. D. Hristovski, C. Friedman, T. C. Rindflesch, and B. Peterlin.: “Exploiting semantic relations
for literature-based discovery.” AMIA Annual Symposium Proceedings, pp. 349-53, 2006.

21. T. C. Rindflesch and M. Fiszman.: “The interaction of domain knowledge and linguistic
structure in natural language processing: interpreting hypernymic propositions in biomedical
text.” Journal of Biomedical Informatics, vol. 36, pp. 462-477, 2003.

22. O. Bodenreider.: “The unified medical language system (UMLS): integrating biomedical
terminology.” Nucleic Acids Research, vol. 32, p. D267, 2004.

23. H. Kilicoglu, M. Fiszman, G. Rosemblat, S. Marimpietri, and T. C. Rindflesch.: “Arguments
of nominals in semantic interpretation of biomedical text.” in Proceedings of the 2010 Work-
shop on Biomedical Natural Language Processing, pp. 46-54, 2010.

24. P. D. Turney.: “Measuring semantic similarity by latent relational analysis.” . Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI-05), Edin-
burgh, Scotland, pp. 1136-1141.

25. M. T. Huber, U. Gotthardt, W. Schreiber, and J. C. Krieg.: “Efficacy and safety of the sigma
receptor ligand EMD 57445 (panamesine) in patients with schizophrenia: an open clinical
trial.” Pharmacopsychiatry, vol. 32, no. 2, pp. 68-72, Mar. 1999.

26. R. Verma, S. Kubendran, S. K. Das, S. Jain, and S. K. Brahmachari.: “SYNGR1 is associated
with schizophrenia and bipolar disorder in southern India.” Journal of Human Genetics, vol.
50, no. 12, pp. 635-640, 2005.

27. R. Schvaneveldt and T. Cohen.: “Abductive Reasoning and Similarity.” in In: Ifenthaler D,
Seel NM, editor(s). Computer based diagnostics and systematic analysis of knowledge.,
Springer, New York, 2010.

28. D. Gentner.: “Structure-mapping: A theoretical framework for analogy.” Cognitive Science,
vol. 7, pp. 155-170, 1983.

29. T. A. Plate.: “Analogy retrieval and processing with distributed vector representations.” Ex-
pert systems, vol. 17, no. 1, pp. 29-40, 2000.

30. C. Eliasmith and P. Thagard.: “Integrating structure and meaning: A distributed model of
analogical mapping.” Cognitive Science, vol. 25, no. 2, pp. 245-286, 2001.


