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A calculus which combined the flexible geometric structure of vector mod-
els with the crisp efficiency of Boolean logic would be extremely beneficial for
modelling natural language. With this goal in mind, we present a formulation for
logical connectives in vector spaces based on standard linear algebra, giving ex-
amples of the use of vector negation to discriminate betweendifferent senses of
ambiguous words. It turns out that the operators developed in this way are pre-
cisely the connectives of quantum logic (Birkhoff and von Neumann, 1936), which
to our knowledge have not been exploited before in natural language processing.
In quantum logic, arbitrary sets are replaced by linear subspaces of a vector space,
and set unions, intersections and complements are replacedby vector sum, inter-
section and orthogonal complements of subspaces. We demonstrate that these logi-
cal connectives (particularly the orthogonal complement for negation) are powerful
tools for exploring and analysing word meanings and show distinct advantages over
Boolean operators in document retrieval experiments.

This paper is organised as follows. In Section 0.1 we describe some of the
ways vectors have been used to represent the meanings of terms and documents in
natural language processing, and describe the way theWORD-SPACE used in our
later experiments is built automatically from text corpora. In Section 0.2 we define
the logical connectives on vector spaces, focussing particularly on negation and
disjunction. This introduces the basic material needed to understand the worked
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examples given in Section 0.3, and the document retrieval experiments described
in Section 0.3.1. Section 0.4 gives a much fuller outline of the theory of quantum
logic, the natural setting for the operators of Section 0.2.Finally, in Section 0.5, we
examine the similarities between quantum logic andWORD-SPACE, asking whether
quantum logic is an appropriate framework for modelling word-meanings or if the
initial successes we have obtained are mainly coincidental.

To some extent, this paper may have been written backwards, in that the im-
plementation and examples are at the beginning and most of the theory is at the
end. This is for two reasons. Firstly, we hoped to make the paper as accessible as
possible and were afraid that beginning with an introduction to the full machinery
of quantum logic would defeat this goal before the reader hasa chance to realise
that the techniques and equations used in this work are really quite elementary.
Secondly, the link with ‘quantum logic’ was itself only brought to our attention
after the bulk of the results in this paper had been obtained, and since this research
is very much ongoing, we deemed it appropriate to give an honest account of its
history and current state.

0.1 Representing word-meaning in vector spaces

A vector space is a collection of points each of which can be specified by a list of
co-ordinates (such as the familiarx-y co-ordinates in Cartesian geometry) (Jänich,
1994, Ch 2), where pairs of points can be added together by adding their co-
ordinates, and an individual point can be multiplied by a ‘scalar’ or number (in this
paper, these scalars are real numbers, so all of our vector spaces are ‘real’ vector
spaces). The first linguistic examples of vector spaces weredeveloped for infor-
mation retrieval (Salton and McGill, 1983), where countingthe number of times
each word occurs in each document gives aterm-document matrix, where thei, jth

matrix entry records the number of times the wordwi occurs in the documentDj .
The rows of this matrix can then be thought of asword-vectors. The dimension of
this vector space (the number of co-ordinates given to each word) is therefore equal
to the number of documents in the collection.Document vectorsare generated by
computing a (weighted) sum of the word-vectors of the words appearing in a given
document.

Such techniques are used in information retrieval to measure the similarity be-
tween words (or more general query statements) and documents, using a similarity
measure such as the cosine of the angle between two vectors (Salton and McGill,
1983, p 121),

sim(w, d) =
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wherewi, di are the co-ordinates of the vectorsw andd, w · d is the (Euclidean)
scalar product ofw andd, and||w|| is the norm of the vectorw (Jänich, 1994, Ch
8). This calculation is simplified further by normalising all vectors to have unit
length, so that the ‘cosine similarity’ is the same as the Euclidean scalar product.
This is a standard technique which (for example) avoids giving too much semantic
significance to frequent terms or long documents. Normalised vectors were used
in all of the models and experiments described in this paper.

A natural advantage of this structure is that it can be used todefine a similarity
score between pairs of terms in exactly the same way — two terms will have a high
similarity score if they often occur in the same documents, and only seldom occur
without one another. In general, several terms are combinedinto a combined query-
statement using commutative vector addition (though the fuzzy-set andp-norm
operations of (Salton et al., 1983) give more sophisticatedmodels for conjunction
and disjunction which also combine some of the benefits of Boolean and vector
approaches).

Typically, such term-document matrices are extremely sparse. The informa-
tion can be concentrated in a smaller number of dimensions using (among other di-
mension reduction algorithms) singular value decomposition, projecting each word
onto then-dimensional subspace which gives the best least-squares approximation
to the original data. This represents each word using then most significant ‘latent
variables’, and for this reason this process is calledlatent semantic analysis(Lan-
dauer and Dumais, 1997). A variant of latent semantic analysis was developed
by Schütze (1998) specifically for the purpose of measuringsemantic similarity
between words. Instead of using the documents as column labels for the matrix,
semantically significantcontent-bearing wordsare used, and other words in the vo-
cabulary are given a score each time they occur within a context window of (eg.) 15
words of one of these content-bearing words. Thus the vectorof the wordfootball
is determined by the fact that it frequently appears near thewordssportandplay,
etc.This method has been found to be well-suited for semantic tasks such as word-
sense clustering and disambiguation. Such a vector space where points are used
to represent words and concepts is sometimes called aWORD-SPACE (Schütze,
1998). The examples and experiments described in this article use exactly this
sort ofWORD-SPACE, using the Euclidean scalar product on normalised vectors to
compute similarity.

Traditional approaches to semantics using set theory and Boolean logic are
well-adapted for arranging primitives into composite propositions but have little
to say on the meaning of those primitives1. The vector models described in this

1Typical analyses (eg. (Partee et al., 1993, Ch 13)) give lambda calculus such as
λxλy.loves(x, y) for the meaning of the predicate ‘loves’, but are content to say that the seman-
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section, by contrast, have plenty to say about the meaning ofthe primitive units,
but only limited means to infer the meaning of sentences fromthese units. We
would ideally, of course, have the best of both worlds.

0.2 Logical Connectives inWORD-SPACE

In this section we introduce logical connectives which can be used to explore mean-
ings of terms inWORD-SPACE. In particular, we define negation in terms of orthog-
onality and disjunction in terms of the vector sum of subspaces. A more thorough
discussion of the logic behind these operations is given in Section 0.4.

Vector Negation

We want to model the meaning of a statement like ‘rock NOT band’ in such a
way that the system realises we are interested in the geological, not the musical
meaning of the wordrock. This involves finding which aspects of the meaning of
rockwhich are different from, and preferably unrelated to, those ofband. Meanings
are unrelated to one another if they have no features in common at all, just as a
document is regarded as completely irrelevant to a user if its scalar product with the
user’s query is zero — precisely when the query vector and thedocument vector are
orthogonal (Jänich, 1994,§8.2) 2. Our definition of negation for vectors relies on
precisely this correspondence between the notions of ‘irrelevant’ and ‘orthogonal
in WORD-SPACE’.

Definition 1 Two wordsa and b are considered irrelevant to one another if their
vectors are orthogonal, i.e.a andb are mutually irrelevant ifa · b = 0.

The statement ‘a NOT b’ is now interpreted as ‘those features ofa to whichb

is irrelevant’.

Definition 2 LetV be a vector space equipped with a scalar product. For a vector
subspaceA ⊆ V , define the orthogonal subspaceA⊥ to be the subspace

A⊥ ≡ {v ∈ V : ∀a ∈ A, a · v = 0}.

Let A andB be subspaces ofV . By NOT B we meanB⊥ and byA NOT B

we mean the projection ofA ontoB⊥.
Leta, b ∈ V . Bya NOT b we mean the projection ofa onto〈b〉⊥, where〈b〉 is

the subspace{λb : λ ∈ R}.

tics of ‘John’ is given byjohn or j and the semantics of ‘Mary’ is given bymary or m.
2This idea of negation as ‘otherness’ is found in Plato’sSophistdialogue (Horn, 2001, p. 1).
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We now show how to use these notions to perform simple calculations with
individual vectors inWORD-SPACE, using a standard projection mapping technique
(Jänich, 1994,§8.2).

Theorem 1 Leta, b ∈ V . Thena NOT b is represented by the vector

a NOT b ≡ a −
a · b

|b|2
b.

where|b|2 = b · b is the norm ofb.

Proof. Taking scalar product withb, we have that

(a NOT b) · b = (a −
a · b

|b|2
b) · b

= a · b −
(a · b) (b · b)

b · b
= 0.

This shows thata NOT b andb are orthogonal, so the vectora NOT b is precisely
the part ofa which is irrelevant tob (in the sense of Definition 1) as desired.

For normalised vectors, Theorem 1 takes the particularly simple form

a NOT b = a − (a · b)b.

In practice this vector is then renormalised for consistency. As well as being well-
motivated theoretically, this expression for negation is computationally extremely
efficient to implement in the ‘search phase’ of a retrieval system. In order to find
terms or documents that are closely related toa NOT b, it is not necessary to com-
pare each candidate with botha and b and then compute some difference. The-
orem 1 gives a single vector fora NOT b, so finding the similarity between any
other vector anda NOT b is just a single scalar product computation.

Vector Disjunction and Conjunction

Modelling disjunctive expressions (such asA OR B) works similarly. Disjunction
in set theory is modelled as the union of sets, which corresponds in linear algebra to
the vector sum of subspaces, sinceA+ B is the smallest subspace ofV containing
bothA andB.

Definition 3 Let b1 . . . bn ∈ V . The expressionb1 OR . . . OR bn is represented
by the subspace

B = {λ1b1 + . . . + λnbn : λi ∈ R}.
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Finding the similarity between an individual terma and a general subspaceB

is more complicated than finding the similarity between individual terms. It makes
sense to define

sim(a,B) = a · PB(a) (1)

that is, the scalar product ofa with theprojectionof a onto the subspaceB, since
this measures the magnitude of the component ofa which lies in the subspaceB.

To find this similarity in practice, it is not correct simply to computesim(a, bj)
for each of the vectorsbj in turn unless the set{bj} is orthonormali.e. the vec-
tors are pairwise orthogonal and of unit length (Jänich, 1994, p 139) (this is very
unlikely). Instead, an orthonormal basis forB must first be constructed, a process
which can be accomplished in practice by first using the Gram-Schmidt process
(Jänich, 1994, p 142) to obtain an orthonormal basis{b̃j} for the subspaceB.
Once this is accomplished, it follows that

PB(a) =
∑

j

(a · b̃j)b̃j

so thatsim(a,B) =
∑

j(a · b̃j). To computesim(a,B) we need to take the scalar

product ofa with eachof the vectors̃bj , so this similarity is more expensive to
compute than that given by Theorem 1. Thus the gain we get by comparing each
document with the querya NOT b using only one scalar product operation is lost
for disjunction, though we show later that this desirable property is recovered for
negateddisjunction.

Just as disjunction makes things more general, we would expect conjunction
to make them more specific. Since our underlyingWORD-SPACE is homogeneous
(in the sense that any two non-zero points can be mapped to each other by a linear
transformation), no one point is naturally any more or less general than any other.
This is one of the noticeable drawbacks for the basic vector model generally: the
termsplant, fruit andapple are all represented by single points without any no-
tion of inclusion or inheritance. Ideally, this problem could be solved by having
concepts represented not only by points but also by higher dimensional subspaces.
Thenplant, for example, could refer to a space withfruit as a subspace thereof, and
with appleas an even smaller subspace or point in thefruit subspace. In theory it
should be possible to build such a space using a taxonomy and corpus-data, though
to our knowledge this has not been accomplished. Such a structure would present
a natural model for conjunction: the conjunction of two subspaces would simply
be their intersection. In the meantime, the intersection ofdistinct one-dimensional
subspaces is always zero, so conjunction in this form is not auseful option.
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suit suit NOT lawsuit
suit 1.000000 pants 0.810573
lawsuit 0.868791 shirt 0.807780
suits 0.807798 jacket 0.795674
plaintiff 0.717156 silk 0.781623
sued 0.706158 dress 0.778841
plaintiffs 0.697506 trousers 0.771312
suing 0.674661 sweater 0.765677
lawsuits 0.664649 wearing 0.764283
damages 0.660513 satin 0.761530
filed 0.655072 plaid 0.755880
behalf 0.650374 lace 0.755510
appeal 0.608732 worn 0.755260

play play NOT game
play 1.000000 play 0.779183
playing 0.773676 playing 0.658680
plays 0.699858 role 0.594148
played 0.684860 plays 0.581623
game 0.626796 versatility 0.485053
offensively 0.597609 played 0.479669
defensively 0.546795 roles 0.470640
preseason 0.544166 solos 0.448625
midfield 0.540720 lalas 0.442326
role 0.535318 onstage 0.438302
tempo 0.504522 piano 0.438175
score 0.475698 tyrone 0.437917

Terms related to ‘suit NOT lawsuit’ Terms related to ‘play NOT game’

Table 1: Examples of negation

0.3 Using negation to find word-senses

This section presents initial examples of our vector connectives which demonstrate
the uses of vector negation, and of vector disjunction and negation together, to find
vectors which represent different senses of ambiguous words. We briefly describe
document retrieval experiments which show that vector negation has clear benefits
over a traditional Boolean method, as shown in (Widdows, 2003b).

A WORD-SPACE model was built as described in Section 0.1 using the New
York Times data from the LDC, a corpus consisting ofca 173 million words from
news articles written between July 1994 and December 1996. As one might expect,
news articles consistently prefer some meanings of ambiguous words over others:
for example, the wordsuit is used far more often in a legal context than a clothing
context. To test the effectiveness of our negation operator, we tried to find some of
the less common meanings by removing words belonging to the more predominant
meanings.

Table 1 shows that vector negation is very effective for removing the ‘legal’
meaning from the wordsuit and the ‘sporting’ meaning from the wordplay, leav-
ing respectively the ‘clothing’ and ‘performance’ meanings. Note that removing
a particular word also removes concepts related to the negated word. This gives
credence to the claim that our mathematical model is removing themeaningof a
word, rather than just a string of characters.

Vector negation and disjunction can be combined to remove several unwanted
areas of meaning simultaneously. Suppose we negate not onlyone argument but
several. If a user states that they want documents related toa but notb1, b2, . . . , bn,
then (unless otherwise indicated) it is clear that they onlywant documents related
to noneof the unwanted termsbi (rather than, say, the average of these terms). In
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rock rock NOT band rock NOT band, arkansas
rock 1.000000 rock 0.450473 rock 0.412383
band 0.892790 dubious 0.402324 stands 0.389242
band’s 0.868856 arkansas 0.400669 celestial 0.387825
bands 0.867765 ark 0.392304 underground 0.381206
punk 0.861354 madison 0.378165 muck 0.376508
pop 0.848222 celestial 0.376519 touches 0.373402
guitar 0.840769 muck 0.367648 pure 0.373129
tunes 0.837099 sheds 0.363119 wind 0.373017
reggae 0.828602 whitewater 0.362743 echoes 0.360734
acoustic 0.820719 gore 0.360440 explosions 0.356637
blues 0.817073 wind 0.357299 beneath 0.355244
rockers 0.807684 majestic 0.355958 planet 0.354783

The wordrock is most closely associated with pop music in the New York Times corpus. However,
removing these meanings by negating the wordbandleaves a set of associations derived from the town
Little Rock, Arkansas. (The wordlittle is not indexed because it is regarded as too common and general
to be a useful search term.) Removingarkansasas well gives meanings closely associated to rock as
a geological material.

Table 2: Senses ofrock in the New York Times

this way the expression

a AND (NOT b1) AND (NOT b2) . . . AND (NOT bn)

becomes
a NOT (b1 OR . . . OR bn). (2)

Using Definition 3 to model the disjunctionb1 OR . . . OR bn as the vector sub-
spaceB = {λ1b1 + . . . + λnbn : λi ∈ R}, this expression can be assigned a
unique vector which is orthogonal toall of the unwanted arguments{bj}, this vec-
tor beinga − PB(a), wherePB is the projection onto the subspaceB just as in
Equation 1. It follows that to compute the similarity between any vector and the
expressiona NOT (b1 OR . . . OR bn) is again asingle scalar product calcula-
tion, which gives the same computational efficiency as Theorem 1. This technique
can be used to ‘home in on’ the desired meaning by systematically pruning away
unwanted features (see Table 2).

0.3.1 Experiments with document retrieval

The effectiveness of vector negation and disjunction at removing unwanted con-
cepts has been reliably demonstrated in document retrievalexperiments, which are
reported in much more detail in (Widdows, 2003b). In order toevaluate the effec-
tiveness of different forms of negation, we used the hypothesis that a query for

term a NOT term b
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should retrieve documents containing many occurences of term a and few oc-
curences of termb. This can be accomplished trivially by first retrieving docu-
ments using the query ‘terma’ and then removing any documents that contain
termb, in the traditional Boolean manner (Salton and McGill, 1983, p. 26). How-
ever, we also measured the occurence of synonyms and neighbours of the term
b. Documents retrieved using vector negation contained far fewer of these than
the Boolean method, which we believe to be strong evidence that vector negation
removes not only unwanted words but unwantedareas of meaning.

0.4 Quantum Logic in Vector Spaces

A development that has recently come to our attention is thatthe logical opera-
tors onWORD-SPACE introduced in section 0.2 are precisely the connectives used
in quantum logic. Quantum logic was formally introduced by Birkhoff and von
Neumann (1936) as a framework in which to account for the observations and
predictions of quantum mechanics, which exhibits some distinctly non-classical
behaviour. A famous example is given by the two-slit experiment, in which pat-
terns are observed which can not be accounted for by assumingthat an electron
must have passed through only one of the two slits (Putnam, 1976, p. 180). A
much better approach is to model the emerging electron as a linear combination of
states, assuming that the final description receives a contribution from each of the
electron’s possible routes. Classical logic has problems in this situation, because
in set-theory ifa is an element of the unionA ∪ B, it follows that at least one of
the statementsa ∈ A, a ∈ B must hold — for example, wherea represents the
state of an electron which has passed through the two slitsA andB then one of the
statements “a passed throughA” or “ a passed throughB” must hold.

Quantum logic solves this problem by describing the outcomes A andB not
as arbitrary sets, but as subspaces of a vector space. Their disjunction is then their
vector sumA+B, which is strictly larger than their set unionA∪B unlessA ⊆ B

or B ⊆ A. 3 Since there are many pointsa ∈ A + B which are neither inA
nor inB, the question “which slit did the electrona go through?” ceases to apply.
Putnam (1976) contends that the differences between quantum logic and classical
logic can account for all of the apparent ‘difficulties’ of quantum mechanics, and

3A simple way to envisage the difference between these two forms of disjunction is to consider
the possible trajectories of a point which starts in the centre of a map with the instructions that it can
travel in a North-Southor an East-West direction. If this disjunction is interpretedclassically, the
particle can only travel to one of a ‘cross-shape’ of points which are either of the same latitude or of
the same longitude as the starting point. In the disjunctionis interpreted in the quantum framework,
the point can travel anywhere that is a linear combination ofnorth-south or east-west journeys,i.e.
anywhere on the map.



: Dominic Widdows and Stanley Peters Stanford University /10

that we should be prepared to change our view of ‘logic’ accordingly.
Philosophical issues aside, the structure of quantum logicitself is quite simple

and is arrived at precisely by replacing the notions of sets and subsets with those of
vector spaces and subspaces (Birkhoff and von Neumann, 1936, §6), (Cohen, 1989;
Wilce, 2003; Putnam, 1976, p. 177). Events in quantum mechanics are represented
by subspaces of a vector spaceV . 4 This leads us to consider the collectionL(V )
of subspaces of vector spaceV , which is a partially ordered set under the inclusion
relation, so that an eventA implies an eventB precisely whenA ≤ B.

The greatest lower bound ormeetof A,B ∈ L(V ) is the greatest element
C ∈ L(V ) such thatC ⊆ A andC ⊆ B, which is precisely the intersectionA∩B.
The least upper bound orjoin of A andB is the smallestD ∈ L(V ) such that
A ⊆ D andB ⊆ D. However, the set unionA ∪ B is not in general a member of
L(V ), and the smallest member ofL(V ) which contains this set is instead the linear
spanA+B. These two operations give the partially ordered setL(V ) the structure
of a lattice (Birkhoff and von Neumann, 1936,§8), (Birkhoff, 1967), (Cohen, 1989,
p. 35). Furthermore, because we are working in a space with aninner product, for
eachA ∈ L(V ) we can define its (unique) orthogonal complementA⊥ just as
in Definition 2. We now have three connectives on the latticeL(V ), defined as
follows (Birkhoff and von Neumann, 1936,§1, §6) (Putnam, 1976, p. 178):

Conjunction A AND B = A ∩ B

Disjunction A OR B = A + B

Negation NOT A = A⊥

(3)

It is simple to show that these connectives onL(V ) satisfy the necessary relations
(such as, for example,A + A⊥ = V , A ∩ A⊥ = {0 ∈ V }) to define alogic on
L(V ). (Cohen, 1989, p. 36).

Another important equivalence is that each subspaceA ∈ L(V ) can be iden-
tified (using the scalar product) with a unique projection map PA : V → A (as in
Theorem 1), and through this bijection the logic of subspaces L(V ) is equivalent
to the logic of projection mappings onV . This logic plays a key role in quantum
mechanics, where the imagePA(V ) of a pointv ∈ V under the projectionPA is
used to measure the probability that a particle in the state represented byv will be
found to have a physical property represented by the subspace A, using the scalar
productPA(v) · v as a probability measure (Wilce, 2003), just as in Equation 1.

4More precisely, quantum mechanics is usually modelled within a Hilbert space, which is a com-
plete inner-product space (Cohen, 1989, 2.18). Every finitedimensional Euclidean space (and so
every example of aWORD-SPACEwith the Euclidean scalar product) is a Hilbert space, and soto
avoid overly technical language we shall continue to talk about vector spaces rather than Hilbert
spaces.
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Quantum logic differs from classical Boolean logic in (at least) two well-known
properties: quantum logic is neither distributive nor commutative. The distributive
law

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

is responsible for the question “which slit did the electronpass through”, and so
(as described above), quantum logic avoids this issue by avoiding the assumption
that the electronmusthave passed entirely through either one of the slits. The
commutative property fails because two projection mappings PA andPB do not
in general commute. (An easy example is to consider the projections onto thex-
axis and the liney = x in the planeR

2.) This is used to account for the fact
that observations interfere with one another in quantum mechanics, which leads to
Heisenberg’s famous uncertainty principle (Birkhoff and von Neumann, 1936,§1).
Measurements made by the projectionsPA andPB are said to becompatibleif and
only if PA andPB commute, which imposes particular conditions on the subspaces
A andB (Cohen, 1989, p. 37).

0.5 Quantum Logic andWORD-SPACE— a fluke or a gold-
mine?

The reason for our interest in quantum logic is that we have already been using
the quantum connectives onWORD-SPACE in Sections 0.2 and 0.3: the logical
operations defined in Equations 2 and 3 are precisely the negation and disjunction
connectives in Equation 3. This gives a much clearer accountfor some of the obser-
vations in Section 0.3. For example, the reformulation of the extended conjunction
in Equation 2 follows immediately from knowing that the logic L(V ) satisfies the
de Morgan laws (Cohen, 1989, p. 37), and it is precisely the non-commutativity
of projection operators which forced us to first obtain an orthonormal basis for the
subspace(b1 OR . . . OR bn) in order to implement Equation 1.

This raises the question of whether quantum logic is a desirable framework
for natural language semantics, or whether the links between quantum logic and
concepts inWORD-SPACE are more accidental. The examples in Section 0.3, and
in particular the retrieval experiments outlined in Section 0.3.1, demonstrate that
the quantum connectives are at least very useful for manipulating word-meanings.

As models for composition of meaning, Boolean and quantum connectives
seem to have different spheres of influence. One intuitive prediction, based on the
mathematical models underlying the two frameworks, is thatBoolean connectives
should be more appropriate for describing discrete entities, and quantum connec-
tives should describe concepts which are more continuous. This prediction is borne
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out in at least some examples. If one’s host for a dinner partysaid“Please come at
7 or 7.30”, one would expect 7.15 also to be a perfectly agreeable time to arrive,
which would be false under a Boolean interpretation of“7 or 7.30” but true under
a quantum interpretation. On the other hand, if upon arrivalone was asked“Would
you like an apple or a plum?”and responded positively, one would not really
expect to be given a nectarine on the basis that nectarines are on a scale between
apples and plums — here we are talking about discrete objectsand it appears that
a Boolean interpretation is appropriate. (In practice, there are many other factors
to take into account — for example, in many day to day contexts(such as train
timetables), a continuous variable becomes ‘quantised’ and interpretations change
accordingly.) This discussion at the very least demonstrates that the differences
between Boolean and vector connectives have linguistic significance beyond sta-
tistical word sense disambiguation and query generation for information retrieval.

One conceptual problem with the quantum disjunction operator is that in a
WORD-SPACEof n-dimensions,n fairly similar concepts could be used to generate
the whole space, provided they are linearly independent, leaving the possibility that
the ‘disjunctions’ predicted by quantum logic may become far too general. Another
problem with the ‘linear span of the arguments’ approach to disjunction is that it
permits interpolationandextrapolation, where extrapolation may be inappropriate.
For example, in the“7 or 7.30” example, we should not predict that 6 o’clock is
also an acceptable arrival time. It follows that a better option might be to interpret
a disjunction not as a linear subspace but as asimplexby adding the conditions
λi ≥ 0,

∑

i λi = 1 to Definition 3.

There are many apparent similarities between the historical debate over quan-
tum and classical mechanics on the one hand, and the tension between ‘symbolic’
and ‘statistical’ approaches to natural language processing on the other. The vec-
tor model for information retrieval was first adopted largely because it allowed for
a naturally continuous ‘relevance score’ rather than a simple dichotomy between
relevance and irrelevance, in much the same way that quantummechanics yields a
probability that a particular event will be observed. The possible similarity between
finding the ‘state’ of a particle through measurement and finding the ‘sense’ of an
ambiguous word in context is raised in Widdows (2003a). Moregenerally, quan-
tum mechanics is possibly the single most successful scientific theory for making
rigourous, testable predictions about systems where it is known thatexceptions are
always a possibility. That natural language bears the hallmarks of such a system is
at the least plausible.
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Demonstration

An interactive demonstration of word-similarity and negation in WORD-SPACE is
publicly available athttp://infomap.stanford.edu/webdemo.
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