Word Vectors and Quantum Logic
Experiments with negation and disjunction

DoOMINIC WIDDOWS AND STANLEY PETERS
STANFORD UNIVERSITY

Appeared in Mathematics of Language 8, Bloomington, Indiaa, June 2003,
pages 141-154

A calculus which combined the flexible geometric structufevector mod-
els with the crisp efficiency of Boolean logic would be extedynbeneficial for
modelling natural language. With this goal in mind, we preéseformulation for
logical connectives in vector spaces based on standarar lalgebra, giving ex-
amples of the use of vector negation to discriminate betveifferent senses of
ambiguous words. It turns out that the operators developdtis way are pre-
cisely the connectives of quantum logic (Birkhoff and voruRe&nn, 1936), which
to our knowledge have not been exploited before in naturajuage processing.
In quantum logic, arbitrary sets are replaced by linear gabss of a vector space,
and set unions, intersections and complements are reptgceector sum, inter-
section and orthogonal complements of subspaces. We déaderihat these logi-
cal connectives (particularly the orthogonal complemenhggation) are powerful
tools for exploring and analysing word meanings and shotindisadvantages over
Boolean operators in document retrieval experiments.

This paper is organised as follows. In Section 0.1 we descitime of the
ways vectors have been used to represent the meanings sfaaedrdocuments in
natural language processing, and describe the wawth®eD-SPACE used in our
later experiments is built automatically from text corpdraSection 0.2 we define
the logical connectives on vector spaces, focussing péatly on negation and
disjunction. This introduces the basic material needednttetstand the worked
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examples given in Section 0.3, and the document retrieyaraxents described
in Section 0.3.1. Section 0.4 gives a much fuller outlinehef theory of quantum
logic, the natural setting for the operators of Section Bially, in Section 0.5, we
examine the similarities between quantum logic armk D-SPACE asking whether
guantum logic is an appropriate framework for modelling dvoreanings or if the
initial successes we have obtained are mainly coincidental

To some extent, this paper may have been written backwardbat the im-
plementation and examples are at the beginning and mosedhdory is at the
end. This is for two reasons. Firstly, we hoped to make thepap accessible as
possible and were afraid that beginning with an introdurctmthe full machinery
of quantum logic would defeat this goal before the readerahasance to realise
that the techniques and equations used in this work areyrgaite elementary.
Secondly, the link with ‘guantum logic’ was itself only brght to our attention
afterthe bulk of the results in this paper had been obtained, axte $his research
is very much ongoing, we deemed it appropriate to give an $toaecount of its
history and current state.

0.1 Representing word-meaning in vector spaces

A vector space is a collection of points each of which can leeifipd by a list of
co-ordinates (such as the familiary co-ordinates in Cartesian geometry) (Janich,
1994, Ch 2), where pairs of points can be added together by@dbeir co-
ordinates, and an individual point can be multiplied by atac or number (in this
paper, these scalars are real numbers, so all of our vecoesre ‘real’ vector
spaces). The first linguistic examples of vector spaces developed for infor-
mation retrieval (Salton and McGill, 1983), where countthg number of times
each word occurs in each document givésran-document matrjxvhere the, ;"
matrix entry records the number of times the wardoccurs in the documend;.
The rows of this matrix can then be thought ofvasrd-vectors The dimension of
this vector space (the number of co-ordinates given to eacti)is therefore equal
to the number of documents in the collectiddbocument vectorare generated by
computing a (weighted) sum of the word-vectors of the wopgsearing in a given
document.

Such techniques are used in information retrieval to meathar similarity be-
tween words (or more general query statements) and docamesing a similarity
measure such as the cosine of the angle between two vectitsn(@nd McGill,
1983, p 121),

sim(w, d) = 2 wid; __w-d
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wherew;, d; are the co-ordinates of the vectarsandd, w - d is the (Euclidean)
scalar product ofv andd, and||w|| is the norm of the vectow (Janich, 1994, Ch
8). This calculation is simplified further by normalisind aéctors to have unit
length, so that the ‘cosine similarity’ is the same as theliean scalar product.
This is a standard technique which (for example) avoidsgitvo much semantic
significance to frequent terms or long documents. Normalisetors were used
in all of the models and experiments described in this paper.

A natural advantage of this structure is that it can be usekfine a similarity
score between pairs of terms in exactly the same way — twostenithhave a high
similarity score if they often occur in the same documentsl, enly seldom occur
without one another. In general, several terms are comlimed combined query-
statement using commutative vector addition (though tlzyftset andp-norm
operations of (Salton et al., 1983) give more sophisticatedels for conjunction
and disjunction which also combine some of the benefits ofi@soand vector
approaches).

Typically, such term-document matrices are extremely sspaiThe informa-
tion can be concentrated in a smaller number of dimensiang @mong other di-
mension reduction algorithms) singular value decompmsifprojecting each word
onto then-dimensional subspace which gives the best least-squppesxdmation
to the original data. This represents each word using:threst significant ‘latent
variables’, and for this reason this process is cdligeint semantic analysid.an-
dauer and Dumais, 1997). A variant of latent semantic arsalyas developed
by Schitze (1998) specifically for the purpose of measusEmmantic similarity
between words. Instead of using the documents as columts ladrethe matrix,
semantically significantontent-bearing wordare used, and other words in the vo-
cabulary are given a score each time they occur within a gowieadow of (eg) 15
words of one of these content-bearing words. Thus the vettiwe wordfootball
is determined by the fact that it frequently appears neamttrels sportand play,
etc. This method has been found to be well-suited for semantis tsisch as word-
sense clustering and disambiguation. Such a vector spaeevploints are used
to represent words and concepts is sometimes calle®rD-SPACE (Schiitze,
1998). The examples and experiments described in thideartge exactly this
sort of WORD-SPACE using the Euclidean scalar product on normalised veotors t
compute similarity.

Traditional approaches to semantics using set theory arudeBio logic are
well-adapted for arranging primitives into composite msitions but have little
to say on the meaning of those primitivesThe vector models described in this

Typical analyses (eg. (Partee et al., 1993, Ch 13)) give d¢embalculus such as
AzAy.loves(x,y) for the meaning of the predicate ‘loves’, but are contentay that the seman-
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section, by contrast, have plenty to say about the meanitigeoprimitive units,
but only limited means to infer the meaning of sentences ftoese units. We
would ideally, of course, have the best of both worlds.

0.2 Logical Connectives irwORD-SPACE

In this section we introduce logical connectives which cam$ed to explore mean-
ings of terms inWORD-SPACE In particular, we define negation in terms of orthog-
onality and disjunction in terms of the vector sum of subsga@ more thorough
discussion of the logic behind these operations is giverentién 0.4.

Vector Negation

We want to model the meaning of a statement like ‘rock NOT bamduch a
way that the system realises we are interested in the gealogiot the musical
meaning of the wordock. This involves finding which aspects of the meaning of
rockwhich are different from, and preferably unrelated to, thofand Meanings
are unrelated to one another if they have no features in camahall, just as a
document is regarded as completely irrelevant to a userstilar product with the
user’s query is zero — precisely when the query vector anddbhament vector are
orthogonal (Janich, 19948.2) 2. Our definition of negation for vectors relies on
precisely this correspondence between the notions oféiramt’ and ‘orthogonal

in WORD-SPACE.

Definition 1 Two wordsa and b are considered irrelevant to one another if their
vectors are orthogonal, i.e: andb are mutually irrelevant iti - b = 0.

The statementa: NOT &’ is now interpreted as ‘those featurescofo whichb
is irrelevant’.

Definition 2 LetV be a vector space equipped with a scalar product. For a vector
subspaced C V, define the orthogonal subspade- to be the subspace

At ={veV:Vac Aa-v=0}.

Let A and B be subspaces &f. By NOT B we meanB-+ and byA NOT B
we mean the projection of onto B.

Leta,b € V. Bya NOT b we mean the projection afonto (b)*, where(b) is
the subspacg\b : A € R}.

tics of ‘John’ is given byj ohn or j and the semantics of ‘Mary’ is given byar y or m.
2This idea of negation as ‘otherness' is found in Plagphistdialogue (Horn, 2001, p. 1).
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We now show how to use these notions to perform simple calonkwith
individual vectors inrWORD-SPACE, using a standard projection mapping technique
(Janich, 1994¢8.2).

Theorem 1 Leta,b € V. Thena NOT b is represented by the vector

a-b

where|b|> = b - b is the norm ob.

Proof. Taking scalar product with, we have that

(aNOTb) b = (a—%;b)-b
(a-b) (b-b)
pu— . b _——
¢ b b
= 0.
This shows that NOT b andb are orthogonal, so the vecteNOT b is preciseﬁy
the part ofa which is irrelevant ta (in the sense of Definition 1) as desired.

For normalised vectors, Theorem 1 takes the particulanhpks form
aNOT b=a— (a-b)b.

In practice this vector is then renormalised for consisteAs well as being well-
motivated theoretically, this expression for negationamputationally extremely
efficient to implement in the ‘search phase’ of a retrievatsgn. In order to find
terms or documents that are closely related d¥OT b, it is not necessary to com-
pare each candidate with bothandb and then compute some difference. The-
orem 1 gives a single vector farNOT b, so finding the similarity between any
other vector and NOT b is just a single scalar product computation.

Vector Disjunction and Conjunction

Modelling disjunctive expressions (suchA$R B) works similarly. Disjunction
in set theory is modelled as the union of sets, which cormed®m linear algebra to
the vector sum of subspaces, sinte- B is the smallest subspace Wfcontaining
both A and B.

Definition 3 Letb,...b, € V. The expressioh; OR ... OR b, is represented
by the subspace
B:{/\1b1+—|—/\nbn>\l GR}
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Finding the similarity between an individual temrand a general subspaée
is more complicated than finding the similarity betweenvidlial terms. It makes
sense to define

sim(a, B) = a - Pg(a) (1)

that is, the scalar product afwith the projectionof a onto the subspacB, since
this measures the magnitude of the componeimtwhich lies in the subspaci.

To find this similarity in practice, it is not correct simply tomputesim(a, b;)
for each of the vectors; in turn unless the sefth; } is orthonormali.e. the vec-
tors are pairwise orthogonal and of unit length (Janictg41® 139) (this is very
unlikely). Instead, an orthonormal basis Brmust first be constructed, a process
which can be accomplished in practice by first using the G&aimmidt process
(Janich, 1994, p 142) to obtain an orthonormal bdéys} for the subspaces.
Once this is accomplished, it follows that

so thatsim(a, B) = }_;(a - b;). To computesim(a, B) we need to take the scalar

product ofa with eachof the vectors?)j, so this similarity is more expensive to
compute than that given by Theorem 1. Thus the gain we get impadng each
document with the query NOT b using only one scalar product operation is lost
for disjunction, though we show later that this desirableperty is recovered for
negateddisjunction.

Just as disjunction makes things more general, we wouldcexqamjunction
to make them more specific. Since our underlyWwngRrD-SPACEis homogeneous
(in the sense that any two non-zero points can be mapped hoodaer by a linear
transformation), no one point is naturally any more or lemsegal than any other.
This is one of the noticeable drawbacks for the basic vectmtahgenerally: the
termsplant, fruit andapple are all represented by single points without any no-
tion of inclusion or inheritance. Ideally, this problem tsbie solved by having
concepts represented not only by points but also by higmeemional subspaces.
Thenplant, for example, could refer to a space withit as a subspace thereof, and
with appleas an even smaller subspace or point infth subspace. In theory it
should be possible to build such a space using a taxonomyaspdszdata, though
to our knowledge this has not been accomplished. Such awsteuwould present
a natural model for conjunction: the conjunction of two qudases would simply
be their intersection. In the meantime, the intersectiodistinct one-dimensional
subspaces is always zero, so conjunction in this form is miseéul option.
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suit suit NOT lawsuit play play NOT game
suit 1.000000(| pants 0.810573 play 1.000000(| play 0.779183
lawsuit 0.868791|| shirt 0.807780 playing 0.773676|| playing 0.658680
suits 0.807798|| jacket 0.795674 plays 0.699858|| role 0.594148
plaintiff 0.717156 || silk 0.781623 played 0.684860|| plays 0.581623
sued 0.706158|| dress 0.778841 game 0.626796|| versatility = 0.485053
plaintiffs ~ 0.697506 || trousers  0.771312 offensively  0.597609|| played 0.479669
suing 0.674661|| sweater 0.765677 defensively  0.546795| roles 0.470640
lawsuits 0.664649|| wearing 0.764283 preseason 0.54416§ solos 0.448625
damages  0.660513 satin 0.761530 midfield 0.540720|| lalas 0.442326
filed 0.655072|| plaid 0.755880 role 0.535318|| onstage 0.438302
behalf 0.650374|| lace 0.755510 tempo 0.504522|| piano 0.438175
appeal 0.608732| worn 0.755260 score 0.475698| tyrone 0.437917
Terms related to ‘suit NOT lawsuit’ Terms related to ‘play N@ame’

Table 1: Examples of negation

0.3 Using negation to find word-senses

This section presents initial examples of our vector cotives which demonstrate
the uses of vector negation, and of vector disjunction agetnen together, to find
vectors which represent different senses of ambiguousswak briefly describe
document retrieval experiments which show that vector h@géas clear benefits
over a traditional Boolean method, as shown in (Widdows 3200

A WORD-SPACE model was built as described in Section 0.1 using the New
York Times data from the LDC, a corpus consistingcafl 73 million words from
news articles written between July 1994 and December 199@&n& might expect,
news articles consistently prefer some meanings of ambigumrds over others:
for example, the worduitis used far more often in a legal context than a clothing
context. To test the effectiveness of our negation operattried to find some of
the less common meanings by removing words belonging to tre predominant
meanings.

Table 1 shows that vector negation is very effective for reimg the ‘legal’
meaning from the worduit and the ‘sporting’ meaning from the woptay, leav-
ing respectively the ‘clothing’ and ‘performance’ mearsngNote that removing
a particular word also removes concepts related to the eggabrd. This gives
credence to the claim that our mathematical model is rengotfia meaningof a
word, rather than just a string of characters.

Vector negation and disjunction can be combined to remowverakunwanted
areas of meaning simultaneously. Suppose we negate nobnalargument but
several. If a user states that they want documents relatetiuonotb, bs, . . . , b,
then (unless otherwise indicated) it is clear that they ovdynt documents related
to noneof the unwanted termk; (rather than, say, the average of these terms). In
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rock rock NOT band rock NOT band, arkansas
rock 1.000000|| rock 0.450473|| rock 0.412383
band 0.892790|| dubious 0.402324}| stands 0.389242
band’s 0.868856|| arkansas 0.400669 celestial 0.387825
bands 0.867765| ark 0.392304|| underground 0.381206
punk 0.861354|| madison 0.378165| muck 0.376508
pop 0.848222|| celestial 0.376519|| touches 0.373402
guitar 0.840769|| muck 0.367648|| pure 0.373129
tunes 0.837099|| sheds 0.363119| wind 0.373017
reggae 0.828602| whitewater  0.362743| echoes 0.360734
acoustic  0.820719| gore 0.360440|| explosions 0.356637
blues 0.817073|| wind 0.357299 || beneath 0.355244
rockers 0.807684{| majestic 0.355958|| planet 0.354783

The wordrock is most closely associated with pop music in the New York Broerpus. However,
removing these meanings by negating the wmaddleaves a set of associations derived from the town
Little Rock, ArkansaqThe wordlittle is not indexed because it is regarded as too common and ¢§enera
to be a useful search term.) Removiagansasas well gives meanings closely associated to rock as
a geological material.

Table 2: Senses obckin the New York Times

this way the expression
a AND (NOT b;) AND (NOT by)... AND (NOT b,,)

becomes
aNOT (b OR ... OR b,). (2)

Using Definition 3 to model the disjunctidi OR ... OR b, as the vector sub-
spaceB = {\ib1 + ... + M\uby : A € R}, this expression can be assigned
unique vector which is orthogonal &l of the unwanted argumen{s; }, this vec-
tor beinga — Pp(a), where Pp is the projection onto the subspagejust as in
Equation 1. It follows that to compute the similarity betwesny vector and the
expressiona NOT (b; OR ... ORb,) is again asingle scalar product calcula-
tion, which gives the same computational efficiency as Téwmok. This technique
can be used to ‘home in on’ the desired meaning by systerfigtfmaning away
unwanted features (see Table 2).

0.3.1 Experiments with document retrieval

The effectiveness of vector negation and disjunction atoréng unwanted con-
cepts has been reliably demonstrated in document retesyariments, which are
reported in much more detail in (Widdows, 2003b). In ordeevaluate the effec-
tiveness of different forms of negation, we used the hyp#ihat a query for

term a NOT term b
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should retrieve documents containing many occurencesrof éeand few oc-
curences of ternd. This can be accomplished trivially by first retrieving decu
ments using the query ‘term@’ and then removing any documents that contain
termb, in the traditional Boolean manner (Salton and McGill, 198326). How-
ever, we also measured the occurence of synonyms and naighbbthe term

b. Documents retrieved using vector negation containeddaef of these than
the Boolean method, which we believe to be strong evideratevéttor negation
removes not only unwanted words but unwaraeshs of meaning

0.4 Quantum Logic in Vector Spaces

A development that has recently come to our attention istti@tiogical opera-
tors onwoORD-SPACEintroduced in section 0.2 are precisely the connectived use
in quantum logic. Quantum logic was formally introduced hbiykBoff and von
Neumann (1936) as a framework in which to account for the rvatiens and
predictions of quantum mechanics, which exhibits someandity non-classical
behaviour. A famous example is given by the two-slit experimin which pat-
terns are observed which can not be accounted for by assuhmah@n electron
must have passed through only one of the two slits (Putnai®g,1®. 180). A
much better approach is to model the emerging electron agarlcombination of
states, assuming that the final description receives aibotiem from each of the
electron’s possible routes. Classical logic has problemthis situation, because
in set-theory ifa is an element of the unioA U B, it follows that at least one of
the statements € A, a € B must hold — for example, where represents the
state of an electron which has passed through the twa4shiisd B then one of the
statementsd passed throughl” or “ a passed througtiB” must hold.

Quantum logic solves this problem by describing the outrmeand B not
as arbitrary sets, but as subspaces of a vector space. Tdjeirddion is then their
vector sumA + B, which is strictly larger than their set uniohu B unlessA C B
or B C A. 2 Since there are many pointsc A + B which are neither ind
nor in B, the question “which slit did the electrango through?” ceases to apply.
Putnam (1976) contends that the differences between quaogic and classical
logic can account for all of the apparent ‘difficulties’ ofajium mechanics, and

3A simple way to envisage the difference between these twodaf disjunction is to consider
the possible trajectories of a point which starts in thergeot a map with the instructions that it can
travel in a North-Soutlor an East-West direction. If this disjunction is interpretassically, the
particle can only travel to one of a ‘cross-shape’ of pointsalv are either of the same latitude or of
the same longitude as the starting point. In the disjundanterpreted in the quantum framework,
the point can travel anywhere that is a linear combinationasth-south or east-west journeys.
anywhere on the map.
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that we should be prepared to change our view of ‘logic’ adicgly.

Philosophical issues aside, the structure of quantum ltagtf is quite simple
and is arrived at precisely by replacing the notions of setssabsets with those of
vector spaces and subspaces (Birkhoff and von Neumann, §&36Cohen, 1989;
Wilce, 2003; Putnam, 1976, p. 177). Events in quantum mectane represented
by subspaces of a vector spdée* This leads us to consider the collectianl’)
of subspaces of vector spake which is a partially ordered set under the inclusion
relation, so that an event implies an evenf3 precisely whem < B.

The greatest lower bound oneetof A, B € L(V) is the greatest element
C € L(V) such thatC C AandC C B, which is precisely the intersectiohn B.
The least upper bound goin of A and B is the smallestD € L(V') such that
A C DandB C D. However, the set uniod U B is not in general a member of
L(V'), and the smallest member bfV') which contains this set is instead the linear
spanA + B. These two operations give the partially ordered/gét) the structure
of alattice (Birkhoff and von Neumann, 19368), (Birkhoff, 1967), (Cohen, 1989,
p. 35). Furthermore, because we are working in a space wittnan product, for
eachA ¢ L(V) we can define its (unique) orthogonal complemdrit just as
in Definition 2. We now have three connectives on the latfi¢®"), defined as
follows (Birkhoff and von Neumann, 19361, §6) (Putham, 1976, p. 178):

Conjunction AANDB=ANB
Disjunction AORB=A+B 3)
Negation NOT A = A+

It is simple to show that these connectivesIai’) satisfy the necessary relations
(such as, for exampled + A+ = V, An At = {0 € V}) to define dogic on
L(V). (Cohen, 1989, p. 36).

Another important equivalence is that each subspace L(V') can be iden-
tified (using the scalar product) with a unique projectiorpna : V' — A (as in
Theorem 1), and through this bijection the logic of subspddd’) is equivalent
to the logic of projection mappings di. This logic plays a key role in quantum
mechanics, where the imade&; (') of a pointv € V under the projectiorP, is
used to measure the probability that a particle in the segigesented by will be
found to have a physical property represented by the subspaasing the scalar
productP4(v) - v as a probability measure (Wilce, 2003), just as in Equation 1

“More precisely, quantum mechanics is usually modellediwiHilbert space, which is a com-
plete inner-product space (Cohen, 1989, 2.18). Every fitiiteensional Euclidean space (and so
every example of avORD-SPACEWith the Euclidean scalar product) is a Hilbert space, antbso
avoid overly technical language we shall continue to taleustvector spaces rather than Hilbert
spaces.
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Quantum logic differs from classical Boolean logic in (a&d8 two well-known
properties: quantum logic is neither distributive nor comtative. The distributive
law

(AUB)NC = (ANC)U(BNC)

is responsible for the question “which slit did the electpass through”, and so
(as described above), guantum logic avoids this issue hgiagothe assumption
that the electroormusthave passed entirely through either one of the slits. The
commutative property fails because two projection mappiRg and Pg do not
in general commute. (An easy example is to consider the giiofes onto the-
axis and the lingy = z in the planeR?2.) This is used to account for the fact
that observations interfere with one another in quantumhaueics, which leads to
Heisenberg’s famous uncertainty principle (Birkhoff ammh\Weumann, 1936,1).
Measurements made by the projectidhsand Pp are said to beompatiblef and
only if P4, andPg commute, which imposes particular conditions on the sutepa
A andB (Cohen, 1989, p. 37).

0.5 Quantum Logic andwoORD-SPACE— a fluke or a gold-
mine?

The reason for our interest in quantum logic is that we haxeadly been using
the quantum connectives oMORD-SPACE in Sections 0.2 and 0.3: the logical
operations defined in Equations 2 and 3 are precisely thdinagand disjunction
connectives in Equation 3. This gives a much clearer acdousbme of the obser-
vations in Section 0.3. For example, the reformulation eféktended conjunction
in Equation 2 follows immediately from knowing that the lodi(1") satisfies the
de Morgan laws (Cohen, 1989, p. 37), and it is precisely thecmwnmutativity
of projection operators which forced us to first obtain ah@nbrmal basis for the
subspacéb; OR ... OR b,) in order to implement Equation 1.

This raises the question of whether quantum logic is a dasiriiamework
for natural language semantics, or whether the links beatveggmntum logic and
concepts iNWORD-SPACE are more accidental. The examples in Section 0.3, and
in particular the retrieval experiments outlined in Settih3.1, demonstrate that
the quantum connectives are at least very useful for maatipgl word-meanings.

As models for composition of meaning, Boolean and quanturmectives
seem to have different spheres of influence. One intuitiegliption, based on the
mathematical models underlying the two frameworks, is Bwilean connectives
should be more appropriate for describing discrete egtiiad quantum connec-
tives should describe concepts which are more continuduis.prediction is borne
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out in at least some examples. If one’s host for a dinner [E&ity‘'Please come at
7 or 7.30", one would expect 7.15 also to be a perfectly agreeable tnagrive,
which would be false under a Boolean interpretatiofi7obr 7.30” but true under
a quantum interpretation. On the other hand, if upon arownal was asketiVould
you like an apple or a plum?”and responded positively, one would not really
expect to be given a nectarine on the basis that nectariresnaa scale between
apples and plums — here we are talking about discrete olgectst appears that
a Boolean interpretation is appropriate. (In practicerdtae many other factors
to take into account — for example, in many day to day contésdsh as train
timetables), a continuous variable becomes ‘quantisediiaterpretations change
accordingly.) This discussion at the very least demorestrgtat the differences
between Boolean and vector connectives have linguistitifsignce beyond sta-
tistical word sense disambiguation and query generatioinformation retrieval.

One conceptual problem with the quantum disjunction operat that in a
WORD-SPACE of n-dimensionsn fairly similar concepts could be used to generate
the whole space, provided they are linearly independestjrig the possibility that
the ‘disjunctions’ predicted by quantum logic may becontéda general. Another
problem with the ‘linear span of the arguments’ approachigfudction is that it
permits interpolatiomndextrapolation, where extrapolation may be inappropriate.
For example, in th&7 or 7.30” example, we should not predict that 6 o’clock is
also an acceptable arrival time. It follows that a betterarpimight be to interpret
a disjunction not as a linear subspace but aglexby adding the conditions
Xi > 0,5, A\; = 1to Definition 3.

There are many apparent similarities between the histallaate over quan-
tum and classical mechanics on the one hand, and the tersiwedm ‘symbolic’
and ‘statistical’ approaches to natural language proaegssin the other. The vec-
tor model for information retrieval was first adopted lagglkeécause it allowed for
a naturally continuous ‘relevance score’ rather than a lrdighotomy between
relevance and irrelevance, in much the same way that quamiechanics yields a
probability that a particular event will be observed. Thegble similarity between
finding the ‘state’ of a particle through measurement andrignthe ‘sense’ of an
ambiguous word in context is raised in Widdows (2003a). Myererally, quan-
tum mechanics is possibly the single most successful #fethiteory for making
rigourous, testable predictions about systems where iasvk thatexceptions are
always a possibility That natural language bears the hallmarks of such a system i
at the least plausible.
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Demonstration

An interactive demonstration of word-similarity and negatin WORD-SPACE s
publicly available aht t p: / / i nf omap. st anf or d. edu/ webdeno.
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