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Abstract. This paper presents a generalized quantum model for describing pur-
poses or goals of individual agents, and the way choices can be made that en-
able these goals to be achieved. The underlying model is a semantic vector space
model, which is turned into a purposeful choice model by labelling some axes
as objectives, and describing choices as transformations on the vector spaces that
enable agents in the model to set these objective axes in sight.
We introduce this framework using a simplified example model of a dog trying
to get food. Many parts of what has become the standard generalized quantum
toolkit become apparent in this model, including learning, superposition, the im-
portance of the metric used for normalization, classification, and a generalized
uncertainty principle. The incorporation of purpose or goal into semantic vectors
models also enables the analysis of traditional areas that are relatively new to
artificial intelligence, including rhetoric, political science, and some of the philo-
sophical questions touched by quantum theorists.

1 Introduction

This paper presents a vector model for the everyday notions of ‘purpose’ and ‘choice’.
While the initial example model requires as background only the basics of Cartesian co-
ordinate geometry, as it progresses, the work builds on progress in quantum interaction
and generalized quantum structures, which have in recent years been used with success
to address many classic problems. The basic approach in this research program involves
representing information systems using vector space models, and as such has been ap-
plied to information discovery and retrieval [1, 2], cognition and decision-making [3],
economics [4, Ch. 10] and organizational dynamics [5]. The ‘quantum’ qualities of
these systems evaluated in the literature to date include non-locality of logical connec-
tives in information retrieval [6, Ch 7], non-commutativity of observables in psycholog-
ical tests [3], the violation of the Bell inequalities in concept combinations [7, 8], and
entanglement in concept combinations [9, 1].

In spite of the success of vector models in large-scale practical tasks such as the
creation of information retrieval systems, the notions of purpose and choice in such
models is comparatively unexplored, sometimes being ignored, and sometimes being
entirely denied as a valid ingredient of the model in the first place. Scientific works
where purpose is largely ignored include studies of the parallels between information
retrieval and quantum theory (see e.g., [10], where the epistemological and ontological



status of items in the system is considered, but the motivations for creating or using
the system are not), and distributional models of concepts and their semantics derived
from natural language corpora (see e.g., [11, 12]). Of course, the relationship of items
in a retrieval system to one another and to objects in the world, and the distribution of
terms and topics in a corpus, are important and valuable areas of study in understanding
language and meaning: however, they do not attempt to explain anything about what au-
thors are trying to accomplish by writing documents, or what users or a retrieval system
are trying to accomplish by issuing search queries. Scientific examples where purpose
is denied as a valid ingredient of the model are much more general, and are a hallmark
of many classical mechanical approached. In broad strokes, Francis Bacon’s philosophy
and the success of Newtonian mechanics in the 17th century led to a broad consensus
in the 18th century that the only notion of cause that can be discussed scientifically is
‘efficient cause’ or cause in the mechanical sense: one of the few things Hume (a great
empiricist) and Kant (a great rationalist) agreed upon was the notion that causes must
precede their effects in time. This overrode Aristotle’s much older analysis in which
included ‘final cause’ or purpose among the natural causes of things (see in particular
Physics Book II Ch. 3; for modern consequences see [13, Ch. 1]).

Whether or not the apparent notion of future purpose can be explained in terms of
temporally prior mechanical causes (for example, by a generalization of field theories in
which the notion of potential is explained in terms of force-carrying particles), it is no-
ticeable that classic models motivated by cause-precedes-effect determinism have been
found wanting in many fields in which the systems under consideration are too complex
or subtle to be described as closed mechanical systems evolving predictably [14], and
the reader will observe that many of the successes of generalized quantum approaches
cited above are precisely in fields that are not (yet) amenable to mechanistic prediction.
In simpler terms, as soon as we consider systems involving living things, especially
people, we see that purpose and choice are fundamental factors in any thorough expla-
nation. These cannot (yet) be explained in terms of more mechanical primitives, but
cannot be neglected if effective scientific models of such systems are to be discovered.
This is by no means a purely abstract exercise: appropriate models for understanding
the goals and choices of authors and readers could (for example) enable engineers to
build better search engines.

It should be noted that models for purpose and choice are not absent from the scien-
tific literature: one of the most famous approaches is the use of ‘belief, desire, intention
networks’, which [15] have been particularly influential in modelling agency in artificial
intelligence [16]. Generalized quantum methods are potentially a complementary inno-
vation to such discrete network models, because the continuous vector representation
automatically enables robust or inexact inference, in ways that are naturally amenable to
learning from experience [17, 18]. Decision-making is also by now deep-rooted in the
quantum interaction community (see particularly [3] and associated works). Here we
note that most of the decision-making situations discussed in this literature are about
deciding between possible information states or beliefs: so arguably, the innovative part
of the purposeful choice model presented in this paper is that it applies vector repre-
sentations to desires and intentions as well as beliefs. However, it is also our hope that
this research area is by now mature enough that the contribution of this paper is not that



it supersedes prior work, but that it simplifies, generalises and extends ideas that are
already available.

With these goals in mind, this paper proceeds as follows. In Section 2, we introduce
a first, extremely simple example that explains the behaviour of an agent (in this case, a
family pet) in a model with one objective axis and two axes for expressing behavioural
choices. The semantic space introduced in this model is similar to the distributional
vector models used widely in information retrieval, computational linguistics, and cog-
nitive science, but unlike many semantic models in these fields, the purposeful choice
model presented here distinguishes ‘ends’ and ‘means’ directions.

In spite of its simplicity, this model is enough to motivate definitions for several
important cognitive processes, including learning and classification: some of these de-
velopments are discussed in Section 3. Many further topics and developments are sug-
gested by this discussion, but due to space constraints, they cannot be included in this
paper. Section 4 outlines some of these topics. They include the modelling of rhetoric,
applications to political theory, and the relationship between purposeful choice models
and some standard areas of discussion in the philosophy of quantum mechanics.

2 First Example: A Dog’s Life

“Look cute, get fed!” may be the motto of fortunate, well-kept pet dogs throughout
many parts of the world. Many readers who own dogs are probably well aware of this
trait: for those who are not, it is sufficient to note that:

1. Most dogs (especially those rescued from situations of hunger) are tirelessly de-
voted to the purpose of getting food.

2. Pet dogs devote themselves to this purpose by seeking out humans who might give
them food, and doing their best to look cute, cuddly, hungry, pitiful, and attractive
to humans as best they can.

In the wild, these behavioural traits are not especially useful compared with the
basic hunting skills of (say) being able to run fast to catch prey. However, pet dogs have
successfully transformed their strategy for getting food from running fast to looking
cute. Experiments with the domestication of the silver fox, a closely related species to
the dog, have demonstrated that profound behavioural changes can take place within a
matter of a few decades, or 30 to 35 generations, leaving the animals “eager to please
and unmistakably domesticated” [19]. By the same token, many tame dogs can make
use of their wilder traits at a moment’s notice: ill-trained or uncontrolled sheepdogs may
chase herds, and most terriers and hounds will kill any small furry creature given the
opportunity. We may sum up by noting that all dogs wish to get food, different strategies
are available (even to an individual dog), and the choice between these strategies is
sometimes made quite quickly and fluidly.

A purposeful choice model for this (obviously simplified) description of a pet dog’s
objective and behaviours is represented in Figure 1. The model uses a 3-dimensional
vector space, whose axes are labelled Get Food, Run Fast, and Look Cute. The Get
Food axis is represented by a thicker line because it represents a purpose, otherwise
described as a goal, end, or objective. Such an axes will be called an objective axis. The



other two axes, Run Fast and Look Cute, represent different possible behaviours that a
dog may choose between to achieve its goal.

The choice between behaviours is now modelled as a change of point-of-view. The
use of this term in the model is just a formalization of its normal conversational use:
a point-of-view is a place from which the concepts around are observed. So an agent
adopts a point-of-view in the model. The wild dog adopts a point-of-view which keeps
the Get Fed objective axis in sight and approximately aligns this axis with the Run Fast
choice. The tame dog instead adopts a point-of-view which approximately aligns the
Get Fed objective axis with the Look Cute axis.

Get Food

Run Fast

Look Cute

Wild

Tame

Fig. 1. A purposeful choice model for a dog in three dimensions

The views from the point-of-view of the wild and the tame dog are shown in Figure
2. For the wild dog, the objective axis Get Fed is aligned with the Run Fast axis, whereas
for the tame dog, the Get Fed axis is aligned with the Look Cute axis. The key point
to see is that by adopting a different point-of-view, the relationships between different
axes change, and that this alignment can be made very deliberately to align behaviours
with objectives.



Get Food

Run Fast

Look Cute

Get Food

Run Fast

Look Cute

TameWild

Fig. 2. The dog model again, from the points-of-view of a wild dog (left) and a tame dog (right)

The rest of this paper, one way or another, will be devoted to fleshing out this basic
model, and explaining how more sophisticated (and to the research community, more
familiar) structures arise in this framework.

The reader should note before progressing further that we have made no claims or
assumptions of orthogonality, or assumed any particular metric function in the purpose-
ful choice model. Many well-kept pet dogs will agree that looking cute and running fast
are not necessarily orthogonal, and indeed, the different strategies for accomplishing a
particular objective are rarely entirely unrelated to one another. To model a purposeful
choice as a change in point-of-view gives considerable freedom here: even if axes are
orthogonal to each other in the underlying model given a particular metric, they will not
usually appear orthogonal to each other once a point-of-view is selected.

The investigation of similarity methods with respect to a point-of-view has already
been introduced in [20], and again, the main single innovation introduced in this paper
is the use of these ideas to model behaviour directed towards particular purposes or
objective. The transformation in similarity measurements resulting from a change in
point-of-view could also be modelled using a change in the metric function on the
vector space, or a rescaling of some of the axes. This is also suggested in the cognitive
science literature: changing the weights assigned to different axes can change the way
items are classified in experiments [21].

From a historical point-of-view, we note that orthogonal coordinate systems are not
assumed in Descartes’ pioneering work on analytic geometry [22] in the 1600’s, though
it is explicitly discussed in Grassmann’s extension of the theory to higher dimensions
in the 1800’s [23].

Another point to note is that, whatever the relationship between the Run Fast and
Look Cute axes, most dogs use a superposition of these states anyway. Wolves may
be single-minded to running fast, shih tzus may be single-minded to looking cute, but
most real dogs have a foot in each camp. As will be discussed in the next section, vector
models are particularly well-suited to representing hybrid strategies of this sort.



Of course, this description is purely a mathematical model, and as such is a sim-
plification and abstraction. We are not attempting to model the physiological or neu-
ronal patterns and changes involved in transitioning from one strategy to another (as
discussed in the case of canids in [19] and mentioned briefly from a cognitive point-
of-view in [17]). Just as vector models for information retrieval do not describe the
physical formats of documents (typefaces, character encodings, etc.), our vector model
for purposeful choice is so far independent of its physical manifestation.

This concludes our initial presentation of the purposeful choice model, using the
simplest possible nontrivial number of dimensions. The key parts to emphasize are that:

– Purposeful choice models are semantic vector models where some of the axes are
marked as goals or objective axes.

– Other axes can be brought into line with these objective axes using a suitable trans-
formation of point-of-view.

3 Common Structures in the Purposeful Choice Model

This section develops the ideas of the purposeful choice model introduced above. This
serves two principal purposes. Firstly, it demonstrates how several well-established
techniques can be incorporated and described in terms of these models. Secondly, where
it presents itself, we take the opportunity to compare classic and generalized quantum
models: in some cases they are similar, but it some cases they lead to strikingly different
paths.

3.1 Learning in Purposeful Choice Models

Vector models are particularly well-suited to learning, and this is one of the key reasons
they have been a key model in information retrieval [24, 2] and have become so suc-
cessful in statistical machine learning [25]. This is easy to explain, at least anecdotally,
referring back to the dog model of Figure 1. Suppose that a piece of food is available
through hunting: then a dog who gets fed in this way learns that hunting characteris-
tics are useful. Such an example is modelled as a point somewhere close to the plane
spanned by the Run Fast and Get Food axes. If the dog gets food in this way, it ends
up satisfying an objective, and in so doing, the dog’s point-of-view is updated to align
these axes more closely. Alternatively, if food is available through begging, this may be
modelled as a point somewhere near to the Look Cute and Get Food axes, and a dog that
successfully fills its belly through begging will have its point-of-view updated to align
these axes. (Which of several possible update functions is used is not discussed here,
suffice it to say that several are available [26, 25].)

Such flexibility to combine learning with action would in itself not be remarkable,
were it not so lacking in many classic models. Consider, for example, Quine’s now
famous example of the problem of deducing whether the word gavagai coupled with
the stimulus of a rabbit-sighting, corresponds to the set of rabbits, or to (say) edible
animals [27]. Given the practical advances of empiricism in artificial intelligence in the
intervening decades, many researchers today would disagree with the conclusion that



language-learning cannot be explained logically, but would instead argue that to model
language-learning, one should use a more appropriate logic. (See [28, 18, 29] for more
details on this point: it is also appropriate to note that George Boole, the inventor of
so-called classical logic, intended ‘The Laws of Thought’ to be used for deduction, and
apparently never intended to apply them to learning [30].)

3.2 Objective Axes and Objective Functions

The most typical way to compare directions in a vector model would be to use cosine
similarity (that is, the similarity between two vectors is measured using the cosine of
the angle between these vectors [6, Ch 5]. Cosine similarity with an objective axis be-
haves as a simple objective function in the classic sense of mathematical optimization,
as used in economics, logistics, management science, etc. At this level of generality,
with a single objective axis and an entirely specified point-of-view, there appears to
be no difference between a classic and a generalized quantum model. What is perhaps
more surprising is that in mathematical optimization, classic models tend to be contin-
uous, whereas in logical semantics, classic models are discrete. This mixture is partly
informed by the observation that in classical mechanics, the set of states is continu-
ous but the logic for inference is discrete (Boolean), whereas in quantum mechanics,
the set of states is discrete but the logic for inference (the set of projectors onto vec-
tor subspaces [31]) is continuous. For more details on this point, see [32]. This serves
as a reminder that definitions of a ‘classic’ or ‘classical’ model vary even more than
definitions of ‘quantum’ or ‘generalized quantum’ models.

3.3 Superposition, or Hybrid Strategies

It has already been noted that most real dogs are not devoted exclusively to running fast
or looking cute as a means to get food, but easily combine both strategies. Suppose that
x is the amount of attention devoted to scenarios where looking cute is helpful, and y is
the amount of attention devoted to scenarios where running fast is helpful. In a classic
probabilistic model, the coordinates must add to unity, so x + y = 1. For (say) a wild
dog accustomed purely to running fast (the strategy where y = 1 and x = 0, giving
any attention to looking cute therefore immediately detracts from the attention devoted
to running fast. By contrast, one key different in a generalized quantum model is that
the squares of the coordinates must add to unity, so that x2 + y2 = 1. An immediate
consequence of this is that beginning to pay attention to another axis introduces no loss 1

to the axes that are already preferred. These two frameworks are depicted in Figure 3: in
mathematical terms, the vectors in the classic model are normalized using a Manhattan

1 The claim that there is no loss at all to existing priorities when a new axis is considered is
strictly true only in the continuous limit. For example, using the standard polar-coordinates
parametrization where x = cos(θ) and y = sin(θ), when θ = 0, x = 1, y = 0, dy

dθ
= 1 and

dx
dθ

= 0. In practice, we assume that all models will be quantized, and so to make an actual
change, there will be some very small cost. The issues involved in quantizing vector models of
information and cognition is not a focus of this paper: we note briefly that this example implies
that it is advantageous for the smallest ‘representational quantum’ to be small.
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(Generalized quantum model)
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(Classic probabilistic model)

Fig. 3. The set of normalized states between two axes in classic and generalized quantum models

metric, whereas in a generalized quantum model, the vectors are normalized using a
Euclidean metric (see [6, Ch 4]).

The upshot of this is that in generalized quantum models, there is very little cost
involved in departing from a pure state to a somewhat mixed state. The result is a dog
whose ideal strategy is modelled as a superposition of the two pure strategies. This is
a difficult idea to incorporate into classic models: in classic models, we may model a
dog who sometimes tries one thing, and sometimes tries another, but not a dog who
is simultaneously trying both. However, such a description has become standard in the
quantum modelling literature, and has been used to accurately predict experimental
observations about how people behave in situations where many potential outcomes
are simultaneously possible: see in particular the work of Busemeyer et al ([33],[3, Ch.
9]) in which shows that difficult situations in psychology that have been traditionally
regarded as paradoxes can be resolved using these methods.

We must of course choose words carefully in this case: clearly the dog cannot nor-
mally be pursuing prey and begging from a human at the same time, and we make
no suggestion that the benefits of Euclidean normalization of a point-of-view vector
can somehow enable an agent to outwit conservation of energy. The claim here is that
agents can easily consider several strategies at once without diluting the attention de-
voted to any one of these strategies as much as may be expected in a classic model.
A more familiar version of this principle arises when it is translated to the information
retrieval literature: here we may remark that in vector models for information retrieval,
if a document is about two topics, its relevance to each of the individual topics as mea-
sured by cosine similarity will be

√
2

2 instead of just 0.5. Furthermore, this property
becomes even more pronounced in higher dimensions: in very high dimensions, many
many vectors can be surperposed without losing the identity of any of the original sum-
mands [17]. 2

2 The difference between normalized coordinates of evenly-balanced vectors using Manhattan
and Euclidean metrics is greatest in dimension 4. The proof is elementary, and consists of



The immediate consequence in the simple purposeful choice model of Figure 1 is
that it costs very little in terms of cognitive attention for a wild dog devoted to hunting
to consider begging as a once-in-a-while alternative. This potential for an individual
to break free from the rest of the population and find a new strategy has already been
modelled successfully in quantum-inspired models (see [34]), so we hope that the pur-
poseful choice model presented here contributes to this strand of research.

3.4 Classification — Fight or Flight?

The purposeful choice model of Figure 1 is oversimplified in many ways, one of which
is that the dog only has one goal, Get Food. Obviously a real dog has several other
objectives, including Avoid Injury. For example, in the case of a dog trying out a Look
Cute begging strategy for the first time, there is a tradeoff between the possibilities that
a human offering a piece of food may give the piece of food, or use it as bait to capture
or injure the dog, and there are good (if anecdotal) reasons to believe that the first dogs
to become domesticated were the first to overcome this fear.

Consider also the case of a dog who has successfully obtained a piece of food, but
is challenged by an antagonist before the food is eaten. There are two choices: to stay
and safeguard the food at the risk of injury, or to run away, at the risk of hunger. This is
commonly known as the flight or fight decision.

It is extremely easy to begin to add such tradeoffs to a purposeful choice model.
We would simply add a fourth axis to Figure 1, marked Suffer Injury, and with some
label to denote that fact that it is a negative objective axis: that is, an axis that the agent
will try to avoid aligning with behaviours in the purposeful choice model. (Due to lack
of space and our inability to draw in four dimensions, we have not included a diagram
of such a system.) Then, for each situation, the agent judges the extent to which Get
Food and Suffer Injury are likely outcomes, and, based on some decision boundary,
will choose either fight or flight (alternatively, beg from human or retreat) accordingly.
Again, several algorithmic strategies for learning such decision boundaries are available
in the machine learning literature [26, 25].

3.5 A Generalized Uncertainty Principle

An important consequence of choosing flight in a flight or fight decision is that the agent
is unable to observe the outcome of the other decision. This is very obvious in everyday
situations, and leads to natural sayings such as “There’s only one way to find out!”, “If
you don’t try it you’ll never know!”, etc.

More generally, in navigating a purposeful choice model, an agent will be aware
that each time a choice is made, this affects which observations will be distorted or
become completely unavailable at subsequent stages. This idea follows the work of
Busemeyer and Bruza on the effects of ordering on attitude (see [3, Ch 3] and related
work). In particular, the effect of making a flight choice may be modelled as a projection

finding x ∈ [0, 1] such that f(x) =
√
x − x is maximized, so f ′(x) = x

− 1
2

2
− 1 = 0,

implying x
1
2 = 1

2
and so x = 1

4
. We are not sure if this number has any special significance.



orthogonal to the Suffer Injury axis, which, while it guarantees that the agent will avoid
injury, also results in information being lost.

4 Further Work and Related Areas: A Grab-bag of Ideas

Many traditional ideas can be defined and described in purposeful choice models. We
use the remaining space in this paper to outline some of these in a preliminary fashion.

4.1 Persuasion or Rhetoric

It is well-known that information is often presented in a way designed to persuade
or influence the point-of-view of others. Traditionally studied as rhetoric, the scientific
discussion of this hugely important process has been largely neglected in computational
linguistics and information retrieval.

In a purposeful choice model, persuasion or rhetoric can be defined as the presenta-
tion of information in a way designed to influence the agent’s point-of-view. Given the
approach to training and classification outlined above, it is clearly possible to arrange
data so that some points-of-view become reinforced, and others become less likely or
unobtainable.

4.2 Application to Political and Organizational Theory

Generalized models have already been applied to political theory (see [35]) and orga-
nizational theory (see [36] and related work). As with work on quantum approaches to
cognition and decision, the focus of this work is largely on describing how agents make
decisions: a further step would be to model the ways other agents act in order to in-
fluence these decisions. Such influencing actions can be decribed in purposeful choice
models as:

– A careful choice of issues by some author to design an appropriate classification
boundary (e.g., in politics, a bill before the legislature is designed to accomplish as
many of the author’s desired goals, while maximizing the bill’s chances of being
voted into law).

– A careful choice of rhetoric designed to bring others to a point-of-view from which
they are likely to agree with the author.

For example, President Lincoln’s 1861 State of the Union Address makes an ad-
mirable case study of the use of rhetoric to align many points-of-view towards a com-
mon goal. Further work would be to model parts of this speech and its goals explicitly
using a purposeful choice model.

4.3 The Purposeful Choice Model and Quantum Mechanics: Some Philosophical
Conclusions

The notion of choice and decision is of course intimately connected to the idea of will
in the sense of freedom of the will, a topic that is often associated with quantum the-
ory, due largely to the probabilistic nature of quantum mechanical results. The notion



of point-of-view is also relevant in quantum mechanics because in quantum mechan-
ics, the observer is usually considered as part of the system, though the meaning and
implications of this broad statement remain much-discussed [13].

It may be thought that a purposeful choice model implies an assumption of free-will
at the expense of determinism. This is not necessarily the case. What is necessarily the
case is that purposeful choice models agree with the basic Aristotelean principle that fi-
nal cause is a valid and valuable kind of causation or explanation when studying natural
processes (‘natural’ including human behaviour for these purposes). That is, a dedicated
determinist may postulate that human behaviour including the notion of purpose could
in principle be reduced to efficient or mechanical cause (just as the apparent ‘goal’ of
an electron and a proton to be near each other can be explained mechanically by the
exchange of photons). The problem with this approach is that it remains a very incom-
plete postulate. Social and information sciences have needed models that explain more
of the phenomena observed in these disciplines, and this is what originally motivated
many researchers to turn to generalized quantum models.

We cannot currently explain human (or even canine!) behaviour without the notion
of purpose and choice: and even if it could be demonstrated in the end that such notions
can be reduced to mechanical or efficient cause, models that successfully incorporate
purpose into informatics would be a necessary stepping-stone. Thus, whether we are
completing classical science or starting a new generalized science, the notion of purpose
will be a key part of the explanation, and we suggest that the purposeful choice models
introduced in this paper can play a valuable and practical role in this project.
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