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Abstract. In the paper, we study linear operators in complex Hilbert
space Cn that are called real-orthogonal projections, which are a general-
ization of standard (complex) orthogonal projections but for which only
the real part of the scalar product vanishes. We compare some partial or-
der properties of orthogonal and of real-orthogonal projections. In partic-
ular, this leads to the observation that a natural analogue of the ordering
relationship defined on standard orthogonal projections leads to a non-
transitive relationship between real-orthogonal projections. We prove
that the set of all real-orthogonal projections in a finite-dimensional com-
plex space is a quantum pseudo-logic, and briefly consider some potential
applications of such a structure.
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1 Introduction

Since its introduction by Birkhoff and von Neumann in the 1930’s [1], many
papers have been devoted to quantum logic.

Definition 1. A quantum logic [2,3] is a set L endowed with a partial order
≤ and unary operation ⊥ such that the following conditions are satisfied (the
symbols ∨, ∧ denote the lattice-theoretic operations induced by ≤):

(i) L possesses a least and a greatest element, 0 and I, and 0 6= I.
(ii) a ≤ b implies b⊥ ≤ a⊥ for any a, b ∈ L.

(iii) (a⊥)⊥ = a for any a ∈ L.
(iv) If {ai}i∈X is a finite subset of L such that ai ≤ a⊥j for i 6= j, then supremum

∨i∈Xai exists in L.
(v) If a, b ∈ L and a ≤ b, then b = a ∨ (b ∧ a⊥).



Sometimes axioms (iv), (v) are replaced with:

(iv)′ If a ≤ b⊥ then there exists a ∨ b.
(v)′ If a, b ∈ L and a ≤ b, then there exists c ≤ a⊥ such that b = a ∨ c.

Algebraically, quantum logics are called orthomodular partially ordered sets
(or, in short, orthomodular posets) [4]. A logic L does not have to be distributive
nor a lattice. Two elements a, b ∈ L are called orthogonal if a ≤ b⊥. We will
denote the orthogonality of a, b by the symbol a ⊥ b.

An important interpretation of a quantum logic is the set of all orthogonal
(=self-adjoint) projections (=idempotents) on a Hilbert space H. This is such a
common example that it is sometimes called the standard logic on H [5], even
though its failure to satisfy the distributive law makes it decidedly non-standard
from the point of view of classical logic. Projections have been and are still
extensively studied [6,7,8,9].

This paper concerns a generalization of the standard quantum logic on Cn,
which results from considering just the real part of the scalar product of two
vectors. It will be shown that the ordering properties of such projections are
somewhat different from those of standard orthogonal projections, resulting in
an interesting and potentially useful algebraic structure. In the process we note
a triviality of Theorem 5(d) of [10].

2 Some Definitions and Properties

Let Cn (Rn) denote the complex (respectively real) Euclidean space with the
Hermitian inner product

(x, y) = x1y1 + x2y2 + ...+ xnyn

for x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) ∈ Cn.

Two vectors x, y are called orthogonal if their Hermitian inner product is zero,
i.e. (x, y) = 0.

One the real vector space Rn, the Hermitian inner product is of course the
same as the standard Euclidean scalar product. On the complex vector space Cn

we can also consider pairs of vectors for which only the real part of the scalar
product is zero.

Definition 2. Two vectors x, y ∈ Cn are said to be real-orthogonal or R-orthogonal
if Re(x, y) = 0.

Note that this property has been called semi-orthogonal [10]. We have chosen
to use the term R-orthogonal instead to avoid any confusion with the more
recognised definition of semi-orthogonal matrices.3

3 “In linear algebra, a semi-orthogonal matrix is a non-square matrix with real
entries where: if the number of columns exceeds the number of rows, then the



Let Cn,n (Rn,n) denote the set of complex (real, respectively) n× n matrices.

The symbol A∗ will stand for the conjugate-transpose matrix of A ∈ Cn,n, i.e.
A∗ij = Āji. It is well-known that (Ax, y) = (x,A∗y) ∀x, y.

By H(A) we denote the Hermitian part of A, i.e. H(A) = 1
2 (A+ A∗). It is well

known that A ∈ Cn,n is an orthogonal projection, i.e. an Hermitian idempotent,
if and only if (In,n −A)x and Ax are orthogonal for all x ∈ Cn.

Definition 3. A matrix A ∈ Cn,n is called a real-orthogonal projection or R-
orthogonal projection if the vectors (In,n − A)x, Ax are R-orthogonal for all
x ∈ Cn.

Definition 4. Let us denote by Sor the set of all R-orthogonal projections on
Cn,n.

This is equivalent to the condition that (In,n − A∗)A is skew-Hermitian, which
is satisfied if and only if A∗A equals the Hermitian part of A, i.e.

A∗A =
1

2
(A+A∗) = H(A). (1)

Note the following:

1. If A is an R-orthogonal projection and A = A∗ then A is an orthogonal
projection.

2. Any one-dimensional R-orthogonal projection in Rn,n is an orthogonal pro-
jection.

Example 1. The matrix A = 1
5

(
4 2
−2 4

)
is neither Hermitian nor idempotent but

satisfies Equation 1, and thus is R-orthogonal.

We wish to make clear that an R-orthogonal projection need not be a pro-
jection in the usual sense, since it is not necessarily an idempotent.

3 Properties of Real-Orthogonal Projections

Property 1. A is an R-orthogonal projection if and only if In,n − A is an R-
orthogonal projection also.

Property 2. Any R-orthogonal projection A ∈ Cn,n is a normal matrix with all
eigenvalues on a circle about 1

2 with radius 1
2 in the complex plane, i.e. every

eigenvalue λ of A satisfies |λ|2 = Re(λ) [10, Corollary 3(b)].

rows are orthonormal vectors; but if the number of rows exceeds the number
of columns, then the columns are orthonormal vectors.” Quoted directly from
https://en.wikipedia.org/wiki/Semi-orthogonal_matrix.

https://en.wikipedia.org/wiki/Semi-orthogonal_matrix


Thus for any R-orthogonal projection A in Cn,n there exists a set of mutually
orthogonal self-adjoint projections {pj} and a set of numbers {λj}, where |λj |2 =
Re(λj) for any j, such that A =

∑
j λjpj .

Theorem 1. It has been demonstrated [10, Theorem 5] that:
Let A, B ∈ Cn,n be R-orthogonal projections. Let α be an arbitrary real scalar

such that 0 < α < 1. Then the following statements hold:

(i) A∗B is an R-orthogonal projection if and only if H(A∗B) = H(A∗BA).
(ii) A+B is an R-orthogonal projection if and only if H(A∗B) = 0.

(iii) A−B is an R-orthogonal projection if and only if H(A∗B) = H(B).
(iv) αA + (1 − α)B is an R-orthogonal projection if and only if H(A∗B) =

1
2 [H(A) +H(B)].

Remark 1. Condition (iv) of Theorem 1 is fulfilled if and only if A = B.

Proof. Let condition (iv) of Theorem 1 be fulfilled: H(A∗B) = 1
2 [H(A)+H(B)],

i.e.

1/2(A∗B +B∗A) = 1/4[(A+A∗) + (B +B∗)] = 1/2(A∗A+B∗B).

Hence
0 = A∗A+B∗B − (A∗B +B∗A) = (A−B)∗(A−B).

Thus A−B = 0 and A = B.

The converse is trivial. �

4 A Partial Ordering on Real-Orthogonal Projections

Let us first present well-known facts about orthogonal projections. Let H be a
Hilbert space and let p, q be orthogonal projections on H.

Property 3. The following conditions are equivalent:

(i) p = pq (= qp).
(ii) pH ⊆ qH

(iii) q − p is an orthogonal projection.

Definition 5. Put p ≤ q if p = pq. Let the symbols ∨, ∧ denote the lattice-
theoretic operations induced by ≤.

Note that p ∨ q is the orthogonal projection onto the subspace pH + qH and
p ∧ q is the orthogonal projection onto pH ∩ qH.

Definition 6. Let p⊥ = I − p.

Property 4. The following conditions are equivalent:



(i) pq = 0.
(ii) p+ q is an orthogonal projection.

(iii) p ∨ q = p+ q.
(iv) q ≤ p⊥.

There are several ways to express ordering and conditionals between opera-
tors on vector spaces. Some are summarized in [11, Ch 5], which draws attention
to the fact that some conditionals are only weakly transitive. In the paper [10]
there is the (Löwner) partial ordering: A≤̂B ⇔ B − A = G∗G for some matrix
G with n rows.

The main contribution of this paper is to offer a new alternative to these
approaches. First we offer a pseudo partial order and unary operation ⊥, with
respect to which Sor becomes well-known structure.

Definition 7. Let A, B ∈ Sor. Put A ≤1 B if B − A ∈ Sor, A⊥ := In,n − A,
and A ⊥ B if B ≤1 A

⊥. Of course A <1 B if A ≤1 B and B −A 6= 0.

Note that:

1. A ≤1 B, and B ≤1 A then A = B.
2. If A ⊥ B then B ⊥ A, and A+B ∈ Sor.
3. The relation ≤1 is an analogue of the partial order relation (see Properties 3,

iii) on the set of standard orthogonal projections.
4. The relation ≤1 does not possess the transitivity property.

Example 2. Let p, q ∈ C2,2, q 6= p⊥, q 6= p be one-dimensional orthogonal
projections. Let λ ∈ C be such that |λ|2 = Re(λ), 0 6= λ 6= 1. It is clear that
λp⊥, (1 − λ)q ∈ Sor. In addition, λp ≤1 λ(p + p⊥) = λI2,2 ∈ Sor, λI2,2 ≤1

(λI2,2 + (1− λ)q) ∈ Sor.
By λp⊥+(1−λ)q 6∈ Sor, we have λp 6<1 λI2,2+(1−λ)q = λp+(λp⊥+(1−λ)q).

Property 5. Note the unusual properties of ≤1:

1. If A <1 B then dim(ACn) ≤ dim(BCn). Really, let B be an orthogonal
projection and A = λB, where |λ|2 = Re(λ) and Im(λ) 6= 0. Then A <1 B
and dim(ACn) = dim(BCn).

2. In Cn for any R-orthogonal projection A, dim(ACn) > 1 there exists one-
dimension R-orthogonal projection P , dim(PCn) = 1 with P <1 A. In real
space Rn this is not true in general case. (It is sufficient to consider R-

orthogonal projection A = 1
5

(
4 2
−2 4

)
in R2. It is clear that dim(AR2) = 2

and P 6<1 A for any one-dimensional orthogonal projection P .)

Remark 2. If A, B ∈ Sor and A ≤1 (In,n − B) then AB 6= 0, in general. For
example, consider A = λP , B = (1 − λ)P , where |λ|2 = Re(λ) and P is an
orthogonal projection with dimP = 1 (cf. Property 4, i).

Lemma 1. Let A, B ∈ Sor. The following conditions are equivalent:



(a) Re(Ax,Bx) = 0, i.e. Ax and Bx are R-orthogonal for all x ∈ Cn.
(b) A+B ∈ Sor.
(c) B ≤1 A

⊥, i.e A ⊥ B.

Proof. (a) ⇔ (b). By [10, Theorem 1], Re(Ax,Bx) = 0 if and only if H(A∗B) =
0. By [10, Theorem 5], H(A∗B) = 0 if and only if A+B ∈ Sor.

(b) ⇒ (c). Let A + B ∈ Sor. By [10, Corollary 3(f)], (In,n − (A + B)) ∈ Sor.
Hence (In,n −A) = (In,n − (A+B)) +B (∈ Sor). Thus B ≤1 In,n −A = A⊥.

(c) ⇒ (b). Let B ≤1 In,n − A. By the definition of ≤1, (In,n − A − B) ∈ Sor.
Then (A+B) = (In,n −A−B)⊥ ∈ Sor. �

Proposition 1. Let A, B ∈ Sor. Then A ≤1 B implies B⊥ ≤1 A
⊥ for any A,

B ∈ Sor.

Proof. Let A <1 B. Then B−A 6= 0, B−A ∈ Sor. We have (In,n−B)+(B−A) =
In,n −A. Hence In,n −B <1 In,n −A, i.e. B⊥ <1 A

⊥. �

Let A, B ∈ Sor. Let us suppose that there exists an R-orthogonal projection C
such that: (1) A ≤1 C, B ≤1 C and (2) C ≤1 D for any D ∈ Sor which A ≤1 C,
B ≤1 C. Let us denote C by A ∨1 B.

Proposition 2. . Let A, B, C ∈ Sor. Let A ≤1 C, B ≤1 C and A ⊥ B. Then
A+B ≤1 C, there exists A ∨1 B and A ∨1 B = A+B.

Proof. (i) By A <1 C and by B <1 C, H(C∗A) = H(A) and H(C∗B) = H(B).
Hence H(C∗(A+B)) = H(C∗A) +H(C∗B) = H(A) +H(B) = H(A+B). By
[10, Theorem 5(c)] C − (A+B) ∈ Sor, i.e. (A+B) ≤1 C.

(ii) It is clear that A <1 (A + B) and B <1 (A + B). Hence there exists
(A ∨1 B) and A ∨1 B = A+B. �

Corollary 1. If {Ai}1≤i≤k (k ≤ m) is a subset of Sor such that Ai ≤1 A
⊥
j for

i 6= j, then supremum ∨1≤i≤kAi exists and =
∑k

1 Ai (∈ Sor).

Proof. By Proposition 2, A1+A2 ≤1 A
⊥
c if c > 2. By the induction,

∑k−1
1 Ai ≤1

A⊥k . By Proposition 2 again, ∨1≤i≤kAi =
∑k

1 Ai ∈ Sor. �

Proposition 3. Let A, B ∈ Sor and let A ⊥ B. Then (A ∨1 B)⊥ is a maximal
element from {F, F ∈ Sor : F ≤1 A

⊥, F ≤1 B
⊥}.

Proof. By Proposition 2, (A∨1B)⊥ = (A+B)⊥ = In,n−(A+B) <1 (In,n−A) =
A⊥. By the analogy, (A ∨1 B)⊥ <1 B

⊥.
Let us assume for the moment that there exist C ∈ Sor, C 6= 0, such that

(A∨1B)⊥+C ≤1 A
⊥ and (A∨1B)⊥+C ≤1 B

⊥. Then In,n−A−B+C ≤1 In,n−A
and hence A ≤1 (A + B) − C. By the analogy, B ≤1 (A + B) − C. Now, by
Proposition 2 again, (A+B) = A ∨1 B ≤1 (A+B)− C <1 (A+B) = A ∨1 B.
This leads to a contradiction. �



Remark 3. For orthogonal projections there is a known stronger result, which is
that if P , Q are orthogonal projections then (P ∨Q)⊥ = P⊥ ∧Q⊥.

Theorem 2. On the set Sor with ≤1 and ⊥ the conditions (i)− (iv), (iv′), (v′)
of Definition 1 are fulfilled.

Proof. Let us verify that (i) − (iv), (iv′), (v′) are fulfilled. Since 0, Im,m ∈
Sor, hence (i). By Proposition 1, we have (ii). The condition (iii) is obviously
satisfied. By Corollary 1, we obtain (iv), (iv′).

Let us prove (v′). Let A, B ∈ Sor and A ≤1 B. Then C := B − A ≤1 A
⊥

and by Proposition 2, B = A+ C = A ∨1 C. �

Now, we offer a partial order on the set Sor.

Definition 8. Let A, B ∈ Sor. Put A ≤ B if there exist finite subset {Ai}m1 ⊂
Sor such that (A + A1 + ... + Ak−1) + Ak ∈ Sor for all k, 1 ≤ k ≤ m and
A+

∑m
i=1Ai = B.

Note that A1 + ... + Ak−1 + Ak 6∈ Sor, in general (see Example 2). By the
definition,

A ≤1 A+A1, A+A1 ≤1 (A+A1) +A2, · · · ,

(A+A1 + ...+Ak−1) +Ak ≤1 (A+A1 + ...+Ak) +Ak+1 for all k.

Let us turn to Example 2. By the construction, λp < (λI2,2 + (1− λ)q).

It is clear that the relation ≤ is a transitive relation and ≤1 entails ≤. But
the converse is not true (Example 2). The relation ≤ is an analogue of the
corresponding partial order relation on the set of all orthogonal projections,
again.

5 An Interpretation of R-orthogonality on R2n

It has been pointed out that the condition that two vectors in Cn be R-orthogonal
is just the same as the condition that they are orthogonal as vectors in R2n using
the euclidean scalar product.

This should lead to an identical version of the theory in strictly real vec-
tor spaces R2n, and a pseudo-logic based on a subgroup of operators Sor <
GL(2n,R).

This approach has yet to be explored.

6 Potential Application Areas

Part of the motivation for studying pseudo-logical structures with non-transitive
ordering relations is the potential to model non-monotonic reasoning.



In economics, a system of preference relations is required to satisfy the tran-
sitivity law to be considered rational, but there are many observed examples
where people make choices that are not rational in this sense [12].

In physics, there is a relationship between transitivity and ergodic dynamical
systems [13]. This leads to the suggestion that a non-transitive logic may help
to model non-ergodic systems.

In information retrieval, various conditional operators on vectors have been
investigated, with distinctions between strongly and weakly transitive condition-
als [11, Ch 5]. As further work, we propose to investigate whether the relations
on R-orthogonal projections discussed in this paper satisfy any of these weaker
logical conditions.

Finally, in linguistics, non-transitive or non-monotonic implications are rea-
sonably common, particularly when the implication statement is an informal
generalization (for example “penguins are birds”, “birds fly”, “penguins don’t
fly”).

As future work, it is worth exploring the potential for using the logic of
R-orthogonal operators to model such situations.

7 Conclusion

This paper has explored a quantum pseudo-logical structure arising from a non-
transitive ordering relation on real-orthogonal projections on complex vector
spaces.

There is much work to do in exploring these structures further and under-
standing their algebraic implications, and related formalisms (for example, treat-
ing the vectors as real throughout). Given the variety of real-world application
areas for non-monotonic reasoning, such exploration may be quite fruitful.
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