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Abstract

The  Predication-based  Semantic  Indexing  (PSI)  approach 
encodes both symbolic and distributional information into a 
semantic  space  using  a  permutation-based  variant  of 
Random Indexing. In this paper, we develop and evaluate a 
computational model of abductive reasoning based on PSI. 
Using  distributional  information,  we  identify  pairs  of 
concepts that are likely to be predicated about a common 
third concept,  or middle term. As this occurs without the 
explicit  identification  of  the  middle  term  concerned,  we 
refer to this process as a “logical leap”. Subsequently, we 
use  further  operations  in  the  PSI  space  to  retrieve  this 
middle term and identify the predicate types involved. On 
evaluation  using  a  set  of  1000  randomly  selected  cue 
concepts,  the  model  is  shown  to  retrieve  with  accuracy 
concepts that can be connected to a cue concept by a middle 
term, as well as the middle term concerned, using nearest-
neighbor search in  the PSI space.  The utility  of quantum 
logical  operators  as  a  means  to  identify alternative  paths 
through this space is also explored. 

 Introduction

The development of alternative approaches to automated 
reasoning has been a concern of the Quantum Interactions 
(QI) community since its inception. One line of inquiry has 
explored the utility of distributional models of meaning as 
a  means of  simulating abduction,  the generation of  new 
hypotheses, in a computationally tractable manner (Bruza, 
Widdows, and Woods, 2006).  Another concern has been 
the  combination  between  symbolic  and  distributional 
models, and ways in which mathematical models derived 
from quantum theory might be applied to this end (Clark 
and Pulman, 2006). This  paper  describes  recent 
developments  along these  lines  resulting  from our  work 
with  Predication-based  Semantic  Indexing  (PSI)  (Cohen, 
Schvaneveldt, and Rindflesch, 2009), a novel distributional 
model that encodes predications, or object-relation-object 
triplets into a vector space using a variant of the Random 
Indexing model (Kanerva, Kristofersson, and Holst, 2000). 

These  predications  are extracted from citations added to 
MEDLINE,  the  most  comprehensive  database  of 
biomedical  literature,  over  the  past  decade  using  the 
SemRep  system  (Rindflesch  and  Fiszman,  2003).  We 
proceed  by  presenting  the  methodological  roots  and 
implementation  of  the  PSI  model,  and  follow  with  a 
discussion  of  the  ways  in  which  abduction  can  be 
simulated in the PSI space. Finally, we explore the use of 
quantum-inspired  approaches  to  concept  combination  to 
constrain the process of abduction, with the aim to identify 
associations between concepts that are of interest for the 
purpose of biomedical knowledge discovery.  

 Background

Abduction, Similarity and Scientific Discovery
Abductive  reasoning,  as  defined  by  the  philosopher  and 
logician, C. S. Peirce (1839-1914) is concerned with the 
generation of new hypotheses given a set of observations. 
Inductive  and  deductive  reasoning  can  be  applied  to 
confirming  and  disproving  hypotheses,  but  abductive 
reasoning is concerned with the discovery of hypotheses as 
candidates for further testing.  Abductive reasoning does 
not necessarily produce a correct hypothesis, but effective 
abductive  reasoning  should  lead  to  plausible  hypotheses 
worthy of further examination and testing.  Several factors 
can  be  seen  to  be  at  work  in  abductive  reasoning 
(Schvaneveldt  and  Cohen,  2010).   Among  these  is 
establishing  new  connections  between  concepts.   For 
example,  consider  information  scientist  Don  Swanson's 
seminal  discovery of  a  therapeutically  useful  connection 
between  Raynaud's disease and  fish oil (Swanson, 1986). 
These concepts had not occurred together in the literature, 
but  were  connected  to  one  another  by  Swanson  by 
identifying potential bridging concepts that did occur with 
Raynaud's  disease  (such  as  blood  viscosity).  Concepts 
occurring with such bridging concepts were considered as 
candidates  for  literature-based  discovery.  Bruza  and  his 
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colleagues note that Swanson's discovery is an example of 
abductive discovery, and argue that, given the constraints 
of the human cognitive system, deductive logic does not 
present  a  plausible  model  for  reasoning  of  this  nature 
(Bruza  et  al.,  2006).  Rather,  associations  between  terms 
derived by a distributional model of meaning, in their case 
Hyperspace Analog to Language (Burgess et al., 1998), are 
presented as an alternative, a line of investigation we have 
also  pursued  in  our  recent  work  on  literature-based 
discovery (Cohen, Schvaneveldt, and Widdows, 2009) .

Specifically, we have been concerned with the ability of 
distributional  models  to  generate  indirect  inferences,  
meaningful estimates of the similarity between terms that 
do not co-occur with one another in any document in the 
database.  Such similarities arise because concepts may co-
occur with other terms even though they never co-occur 
with one another.  In the context of Swanson's discovery, 
this  would  involve  identifying  a  meaningful  association 
between  Raynaud and  fish oil. This association would be 
drawn  without  the  explicit  identification  of  a  bridging 
term. Having identified these associations, it would then be 
possible  to  employ  some  more  cognitively  and 
computationally demanding mechanism such as  symbolic 
logic to  further investigate the nature of  the relationship 
between  these  terms.  As  proposed  by  Bruza  and  his 
colleagues, these associations serve as “primordial stimuli 
for  practical  inferences  drawn  at  the  symbolic  level  of 
cognition” (Bruza, Widdows, and Woods, 2006). The  idea 
that  some  economical  mechanism  such  as  association 
might be useful in the identification of fruitful hypotheses 
for further exploration is appealing for both theoretical and 
practical reasons, the latter on account of the explosion in 
computational complexity that occurs when considering all 
possible  relations  of  each potential  bridging  term in  the 
context  of  scientific  discovery.  In  addition,  there  is 
empirical evidence that associations drawn subconsciously 
can precede the solution of  a  problem (Durso,  Rea,  and 
Dayton, 1994). In  the  remainder  of  this  paper,  we will 
discuss the ways in which similarity/association captured 
by a distributional model of meaning, can support both the 
identification and validation of hypotheses drawn from the 
biomedical literature. We begin by presenting some recent 
technical  developments  in  the  field  of  distributional 
semantics,  to  lay  the  foundation  for  a  discussion  of 
Predication-based Semantic Indexing (PSI)  (Cohen et  al. 
2009), a novel distributional model we have developed in 
order to simulate aspects of abductive reasoning.

Permutation-based Semantic Indexing
In  a  previous  submission  to  QI  (Widdows  and  Cohen, 
2009), we  discussed  a  recent  variant  of  the  RI  model 
developed by Sahlgren and his colleagues (Sahlgren, Holst, 
and Kanerva, 2008). Based on Pentti  Kanerva's work on 
sparse high-dimensional representations (Kanerva, 2009), 
this model utilizes a permutation operator  that shifts  the 
elements of a sparse high-dimensional  vector in order to 
encode the positional relationship between two terms in a 
sliding window. In sliding-window based variants of  RI, 

each term is assigned both a sparse  elemental vector,  and 
a semantic vector of a pre-assigned dimensionality several 
orders of magnitude less than the number of terms in the 
model (usually on the order of 1000). Elemental  vectors 
consist of mostly zero values, but a small number of these 
(usually on the order of 10) are randomly assigned as either 
+1 or -1, to generate a set of vectors with a high probability 
of being close-to-orthogonal to one another on account of 
their sparseness. For each term in the model, the elemental 
vector for every co-occurring term within a sliding window 
moved  through the  text  is  added to  the  term's  semantic
vector.  The  permutation-based  model  extends  this 
approach,  using  shifting  of  elements  in  the  elemental 
vector to encode the relative position of terms. Consider 
the following approximations of elemental vectors:

v1: [-1, 0, 0 , 0 , 1, 0, 0, 0, 1, 0]
v2: [0, -1, 0 , 0 , 0, 1, 0, 0, 0, 1]

Vector v2 has been generated from vector v1 by shifting all 
of  the  elements  of  this  vector  one  position  to  the  right. 
These two vectors are orthogonal to one another, and with 
high-dimensional vectors it is highly probable that a vector 
permuted in this manner will  be orthogonal,  or close-to-
orthogonal,  to  the  vector  from which it  is  derived.  It  is 
possible  to  reverse  this  transformation  by   shifting  the 
elements one position to the left to regenerate v1. These 
properties are harnessed by Sahlgren and his colleagues to 
encode  the  relative  position  of  terms,  providing  a 
computationally  convenient  alternative  to  Jones  and 
Mewhort's  Beagle  model  (Jones  and  Mewhort,  2007), 
which  uses  Plate's  Holographic  Reduced  Representation 
(Plate,  2003)  to achieve  similar  ends.  Both  of  these 
approaches allow for order-based retrieval. In the case of 
permutation-based encoding, it is possible, by reversing the 
permutation used to encode position, to extract from the 
resulting vector space a term that  occurs  frequently in a 
particular  position  with  respect  to  another  term.  For 
example,  in  a  permutation-based space derived from the 
Touchstone Applied Sciences corpus, the vector derived by 
shifting the elements of the elemental vector for the term 
“president” a position to the left produces a sparse vector 
that  is  strongly associated with the semantic vectors1 for 
the terms “eisenhower”, “ nixon”, “reagan” and “kennedy”.

Predication-based Semantic Indexing (PSI)
While the incorporation of additional information related 
to word order facilitates new types of queries, and has been 
shown  to  improve  performance  in  certain  evaluations 
(Sahlgren et  al.,  2008),  the associations derived between 
terms are general in nature. However, it has been argued 
that  the  fundamental  unit  of  meaning  in  text 
comprehension  is  not  an  individual  term,  but  an object-
relation-object triplet, or proposition. This unit of meaning 
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is also termed a predication in logic, and is considered to 
be  the  atomic  unit  of  meaning  in  memory  in  cognitive 
theories of text comprehension (Kintsch, 1998).

In  our  recent  work  (Cohen,  Schvaneveldt  and 
Rindflesch,  2009)  we  adapt  the  permutation-based 
approach developed by Sahlgren  et  al to  encode object-
relation-object  triplets,  or  predications,  into  a  reduced-
dimensional vector space. These triplets are derived from 
all  of  the  titles  and  abstracts  added  to  MEDLINE,  the 
largest existing repository of biomedical citation data, over 
the  past  decade by the  SemRep system (see  below).  To 
achieve this end, we assign a sparse elemental vector and a 
semantic  vector  to  each  unique  concept  extracted  by 
SemRep,  and  a  sequential  number  to  a  set  of  predicate 
types SemRep recognizes. For  example,  the  predicates 
“TREATS”,  “CAUSES”  and  “ISA”  are  assigned  the 
numbers  38,  7,  and  22  respectively.  Rather  than  use 
positional shifting to encode the relative position of terms, 
we use positional shifts to encode the type of predicate that 
links two concepts. Consequently each time the predication 
“sherry  ISA  wine”  occurs  in  the  set  of  predications 
extracted by SemRep, we shift the elemental vector for the 
concept  “sherry”  22 positions to  the right,  to  signify an 
ISA  relationship.  We  then  add  this  permuted  elemental 
vector to the semantic vector for “wine”. Conversely, we 
shift  the elemental  vector for “wine” 22 positions to the 
left,  and  add  this  permuted  elemental  vector  to  the 
semantic vector for “sherry”. Encoding predicate type in 
this manner facilitates a form of predication-based retrieval 
that is analogous to the order-based retrieval employed by 
Sahlrgren and his colleagues.  For example, permuting the 
elemental  vector  for  “wine”  22  positions  to  the  left 
produces  a  sparse  vector  with  the  nearest  neighboring 
semantic vectors and association strengths in Table 1 (left).

Table  1.  Results  of  the  predication-based  queries  “? 
ISA wine” (left) and “? ISA food” (right).
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Further  details  of the implementation of  this model,  and 
examples of the sorts of queries it enables can be found in 
(Cohen,  Schvaneveldt  and  Rindflesch  2009).  For  the 
purposes  of  this  paper,  we  have  modified  the  model  in 
order  to  facilitate  the  recognition  of  terms  that  are 
meaningfully connected by a bridging term. In PSI, each 
unique  predicate-concept  pair  is  assigned  a  unique 
(permuted) elemental  vector.  Consequently,  the  semantic 
vectors for any two concepts should only be similar to one 
another if they occur in the same predication type with the 
same  bridging  concept  (discounting  unintended  random 

overlap).  This constraint is too tight to support  scientific 
discovery, or to model abduction. Consequently,  in  the 
current iteration of PSI in addition to adding the predicate-
appropriate  permutation  of  an  elemental  vector  to  the 
semantic vector of the other concept in a predication, we 
also add the unpermuted elemental vector for this concept. 
The procedure to encode the predication “sherry ISA wine” 
would then be as follows. First, add the elemental vector 
for sherry to the semantic vector for wine. Next, shift the 
elemental vector for sherry right 22 positions and add this 
to the semantic vector for  wine. The converse would be 
performed as described previously, but both the permuted 
and  unpermuted  elemental  vectors  for  wine  would  be 
added  to  the  semantic  vector  for  sherry.  Encoding  of 
predicate-specific and general relatedness in this manner is 
analogous to the encoding of “order-based” and “content-
based” relatedness in approaches that capture the relative 
position of terms (Sahlgren, Holst and Kanerva 2008).  

Semrep
The predications  encoded by  the  PSI  model  are  derived 
from  the  biomedical  literature  by  the  SemRep  system. 
SemRep is a symbolic natural language processing system 
that identifies semantic predications in biomedical text. For 
example, SemRep extracts “Acetylcholine STIMULATES 
Nitric Oxide” from the sentence In humans, ACh evoked a  
dose-dependent  increase  of  NO  levels  in  exhaled  air.
SemRep is linguistically based and intensively depends on 
structured  biomedical  domain  knowledge  in  the  Unified 
Medical Language System (UMLS SPECIALIST Lexicon, 
Metathesaurus, Semantic Network (Bodenreider 2004)). At 
the  core  of  SemRep  processing  is  a  partial  syntactic 
analysis in which simple noun phrases are enhanced with 
Metathesaurus concepts. Rules first link syntactic elements 
(such  as  verbs  and  nominalizations)  to  ontological 
predicates  in  the  Semantic  Network  and  then  find 
syntactically allowable noun phrases to serve as arguments. 
A  metarule  relies  on  semantic  classes  associated  with 
Metathesaurus concepts to ensure that constraints enforced 
by the Semantic Network are satisfied. 

SemRep  provides  underspecified  interpretation  for  a 
range  of  syntactic  structures  rather  than  detailed 
representation for a limited number of phenomena. Thirty 
core predications in clinical medicine, genetic etiology of 
disease,  pharmacogenomics,  and  molecular  biology  are 
retrieved.  Quantification,  tense  and  modality,  and 
predicates  taking  predicational  arguments  are  not 
addressed.  The  application  has  been  used  to  extract 
23,751,028 predication tokens from 6,964,326 MEDLINE 
citations (with dates between 01/10/1999 and 03/31/2010). 
Several  evaluations  of  SemRep  are  reported  in  the 
literature.  For  example,  in  Ahlers  et  al.  (2004)  .73 
precision  and  .55  recall  (.63  f-score)  resulted  from  a 
reference  standard  of  850  predications  in  300  sentences 
randomly selected from MEDLINE citations. Kilicoglu et 
al. (2010) report .75 precision and .64 recall (.69 f-score) 
based on 569 predications annotated in 300 sentences from 
239  MEDLINE  citations.  Consequently,  the  set  of 
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predications extracted by SemRep present a considerable 
resource for biomedical knowledge discovery.

 Abduction in PSI-space

For the reasons described previously, the stepwise traversal 
of all concepts in predications with each middle term that 
occurs in a predicate with a cue concept is not plausible as 
a  computational  model  of  abduction.  Consequently,  we 
have developed a model in which the search for a middle 
term is guided by an initial “logical leap” from cue concept 
to target concept. 

Our  model  of  abduction  consists  of  the  following  three 
stages:

1. Identification  of  the  nearest  neighboring  semantic  
vector to the semantic vector of a concept of interest 
2. Identification of  a  third “middle term” between the 
cue  concept  and  the  nearest  neighbor.  This  is 
accomplished by taking the normalized vector sum (or 
vector  average)  of  the  semantic  vectors for  these  two 
concepts, and finding the most similar elemental vector.
3. Decoding of the predicates that link the three concepts 
identified.  For  each  pair  of  concepts,  this  is 
accomplished by retrieving the elemental vector for one, 
and the semantic vector for the other, and shifting one of 
these  by  the  number  corresponding  to  each  encoded 
predication, to identify the predicate that fits best. 

For example,  the nearest  neighboring semantic vector  to 
that of “pastry” represents “rusk”. The nearest neighboring 
elemental  vector  to  the  vector  average  of  these  two 
semantic  vectors  is  the  elemental  vector  for  “food”. 
Decoding  these  predicates  retrieves  the  predication  pair 
“rusk ISA food; pastry ISA food”.

Such  "logical  leaps"  may  correspond  to  an  intuitive 
sense  of  association  in  psychological  terms.  The 
underlying  mechanism  may  involve  associations  arising 
from related patterns of  associated neighbors rather than 
any  direct  association.  These  indirect  associations  are 
likely to be weaker than direct  associations so detecting 
and reflecting on them may not occur without some effort 
directed  toward  searching  for  potential  hypotheses, 
solutions,  or  discoveries.  Psychological  research  has 
provided evidence that such associations occur in learning 
and  memory  experiments  (Dougher,  et  al.,  1994,  2007; 
Sidman, 2000). Once detected, indirect associations could 
be pursued in a more conscious/symbolic way to identify 
common  neighbors  or  middle  terms  on  the  way  to 
assessing  the  value  of  the  indirect  associations.  Our 
computational methods can be seen as ways to simulate the 
generation and evaluation of such potential discoveries.

In order to evaluate the extent to which this approach 
can be used to both identify and characterize the nature of 
meaningful associations, we select at random 1000 UMLS 
concepts extracted by SemRep from MEDLINE over the 
past decade. We include only concepts that occur between 
10 and 50,000 times in this dataset, to select for concepts 

that  have  sufficient  data  points  to  generate  meaningful 
associations  and  eliminate  concepts  that  carry  little 
information content from the test set. We generate a 500 
dimensional PSI space derived from all of the predications 
extracted by SemRep from citations added to MEDLINE 
over the past decade (n = 22,669.964), excluding negations 
(x  does_not_treat  y).  We  also  exclude  any  predication 
involving  the  predicate  “PROCESS_OF”,  as  these  are 
highly prevalent but tend to be uninformative (for example, 
“tuberculosis  PROCESS_OF  patients”).  For  the  same 
reason,  we  exclude  any  concepts  that  occur  more  than 
100,000 times in the database. 

We  then  follow  the  procedure  described  previously, 
taking the nearest neighboring semantic vector of each cue 
concept,  generating  the  vector  average  of  these  two 
vectors,  searching  for  the  nearest  elemental  vector  and 
using the decoding process to find the predication that best 
links  each  pair  of  concepts  (cue  and  middle  term,  and 
target  and  middle  term).  We  then  evaluate  these 
predications  against  the  original  database,  to  determine 
whether  these  are accurate.  Of the 1000 cue  concepts  it 
was possible to evaluate 999, as one concept occurred in 
predications that were not included in the model (such as 
PROCESS_OF) only. Of these 999 concepts, a legitimate 
target concept and middle term were identified for  962 of 
them, which can be considered as a precision of 0.963 if 
retrieval  of  a  set  of  accurate  relationships  from  the 
database is taken as a gold standard. 

Figure 1: Cosine association and accuracy

Accurately retrieved results tended to have a higher cosine 
association  between  the  middle  term  and  the  vector 
average constructed from the cue concept and its nearest 
neighboring  semantic  vector,  as  illustrated  in  Figure  1, 
which shows the number of accurate and inaccurate results 
at  different association strengths. Table 2 shows the five 
most strongly associated middle terms across this test set, 
together  with the predicates linking them to the cue and 
target concepts.  In  the  first  example,  a� � ���������
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Table 2: “logical leaps”. Cue concepts are in bold, and 
nearest neighbors are underlined. cos = cosine.
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These examples illustrate the ability of vectors encoded 

using PSI to capture similarity between concepts linked by 
a middle term without the need to explicitly retrieve this 
term.  However,  at  times it  may be of  greater  interest  to 
explore  some  subset  of  this  space,  so  as  to  retrieve 
concepts linked by specific predicate types. One  goal  of 

this research is to develop computational tools with which 
scientists  can  explore  the  conceptual  territory  of  their 
domain  of  interest.  Just  as  users  of  a  vector-based 
information  retrieval  system  require  methods  through 
which to direct their search for documents, there is a need 
for the development of methods through which a scientist 
might further refine the search for new ideas. 

Quantum Operators in PSI Space

One  potential  solution  to  the  problem  of  constraining 
search  is  suggested  by  the  analogy  drawn  between  the 
many senses  of  a  term that  may be  captured  by  a  term 
vector  in  geometric  models  of  meaning,  and  the  many 
potential states of a particle that are represented by a state 
vector in quantum mechanics (Widdows and Peters, 2003). 
With  respect  to  PSI,  the  semantic  vector  representing  a 
concept can be viewed as a mixture of elemental vectors 
representing  each  predicate-concept  pair  and  concept  it 
occurs with. This analogy supports the application of the 
operators of quantum logic, as described by Birkhoff and 
von  Neumann  (Birkhoff  and  Von  Neumann,  1936),  to 
semantic  vectors,  resulting  in  the  definition  of  semantic 
space  operators  effecting  quantum  logical  negation  and 
disjunction in semantic space (Widdows and Peters, 2003). 

Negation
Negation  in  semantic  space  involves  eliminating  an 
undesired sense of a term by subtracting that component of 
a  term  vector  that  is  shared  with  a  candidate  term 
representing  the  undesired  sense.  For  example,  the  term 
“pop” can be used to eliminate the musical  sense of the 
term “rock”  (Widdows,  2004).  This  is  accomplished  by 
projecting the vector for “rock” onto the vector for “pop” 
(to  identify  the  shared  component),  and  subtracting  this 
projection from the vector for “rock”. The resulting vector 
will be orthogonal to the vector for “pop”, and as such will 
not be strongly associated with vectors representing music-
related concepts that are similar to the vector for “pop”, but 
will  retain  similarity  to  terms  such  as  “limestone”  that 
represent the geological sense of “rock”.  

A  similar  approach  can  be  applied  to  the  semantic 
vectors generated using PSI, in order to direct the search 
for related concepts away from a nearest neighbor that has 
been  identified.  As  is  the  case  with  terms,  one  would 
anticipate  this  approach  would  eliminate  not  only  the 
specific  concept  concerned,  but  also  a  set  of  related 
concepts.  Specifically,  we  anticipate  that  this  approach 
would  identify  a  new  path  involving  a  different  middle 
term (or group of terms), without the explicit identification 
of the middle term to be avoided beforehand.   

In order to evaluate the extent to which negation can be 
used to identify new pathways in PSI space, we take the 
same  set  of  1000  randomly  selected  concepts  as  cue 
concepts. For each cue concept, we retrieve the vector for 
the concept (cue_concept), and the vector for the nearest 
neighbor previously retrieved (nn_previous).  We then use 
negation to extract the component of  cue_concept  that is 
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orthogonal  to nn_previous,  and  find  the  nearest 
neighboring  semantic  vector  to  this  combined  vector 
(nn_current).  Finally,  we  take  the  vector  average  of 
cue_concept and  nn_current,  render  this  orthogonal  to 
nn_previous using  negation,  and  find  the  nearest 
neighboring elemental vector to this combined vector. We 
then  decode  the  predicates  concerned  using  the 
permutation operator as described previously. 

Table 3: Negation to identify new paths (n=997)
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The results of this experiment are shown in Table 3. It was 
possible to obtain results for 997 of the set of 1000. One 
concept was excluded for the same reason as before, and 
another  two  were  excluded  as  the  negation  operator 
produced  a  zero  vector,  as  these  concepts  occurred  in 
predications  exclusively  with  a  single  predicate-concept 
pair.  As anticipated, in every case negation eliminated the 
concept represented by  nn_previous. However, this result 
could have been obtained using boolean negation, which is 
the  equivalent  of  simply  selecting  the  next-nearest 
neighbor, as we have done for comparison purposes. 

Of  greater  interest  is  the  extent  to  which  the  use  of 
quantum negation eliminates the path across a middle term 
that  was  used  to  identify  a  previous  neighbor.  This 
occurred  after  quantum  negation  in  94.1%  of  cases,  as 
oppose  to  27.7%  in  the  case  of  boolean  negation.  A 
concern  with  the  use  of  this  method  is  that  the 
orthogonalization process may introduce further errors as 
concept  vectors  are  distorted  beyond  recognition. 
However,  as  shown in Table 3,  this  process led to only 
slightly  more  erroneous  predications  than  were  obtained 
with  boolean  negation.  Interestingly,  the  set  of  errors 
produced in the original experiment has very few elements 
in common with the set produced after quantum negation – 
erroneous predications were produced for only four of the 
same cue terms. 

Dual Dissection
We note that it is possible to select for particular predicate 
types  by  reversing  the  permutation  operator  that 
corresponds to the predicate of interest. For example, the 
predication  A  TREATS  B  is  encoded  by  shifting  the 
elemental  vector  for  A,  Ae,  38  steps  to  the  right,  and 
adding this to the semantic vector for B. The unpermuted 
vector,  Ae,  is  also  added  to  this  vector.  Applying  the 
reverse shift to this semantic vector, to produce B^ should 
produce a vector that retains some remnant of the original 
Ae. As this remnant should be encoded in both the original 
semantic vector for B, and its permutation, B^, we attempt 
to extract the common components of these vectors using 
the following procedure, which we will term dissection:
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To illustrate the utility of this approach, we present a series 
of examples in which we attempt logical leaps by applying 
the dissection method to both the cue term and candidate 
nearest neighbors. For example, consider a logical leap of 
the form “X ISA Y; Y TREATS Z” where Z is the cue 
term. In the case of the cue term, we perform the reverse of 
the “TREATS” permutation prior to dissection. For each 
target  term  we  perform  the  “ISA”  permutation  before 
dissection.  After  dissection,  we  measure  the  cosine 
between these transformed vectors to find a best match. 

Table  4:  Leaps  across  specific  predicates.  *  denotes 
concepts that do not occur in a predicate with the cue.
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Table  4  illustrates  some  examples  of  dissection-based 
searches. Nearest neighbors for each search are on the left, 
and  the  pattern  of  the  strongest  connection  through  a 
middle term in each case is shown on the right. In each 
case, the same pattern of strongest connections was shared 
by all five of the nearest neighbors shown, and corresponds 
to  the  pattern  specified  using  the  dissection-based 
approach.  In  all  cases,  the  five  nearest  neighbors  are 
different  than  those  retrieved  by  a  logical  leap  search 
without dissection, and in many cases (denoted by an *), 
the nearest neighbors are concepts that do not occur with 
the cue concept directly in any predication in the database. 
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These  examples  illustrate  the  way  in  which  paired 
permutations can be used to infer information beyond that 
which is stated explicitly in the database. The system has 
inferred plausible treatments for depressive disorders and 
dysthymic disorder; and gene/protein-disease associations 
related to prion diseases based on taxonomic relationships 
extracted  from  the  literature  by  SemRep.   While  these 
examples  illustrate  only  a  few  possibilities  for  the 
application  of  dual  dissection,  it  was  not  difficult  to 
generate  others.  We found that  this  approach  frequently 
results in logical leaps of the desired form. Pitfalls include 
a  tendency  to  generalize  too  generously  (for  example, 
therapeutic associations involving high-level middle terms 
such  as  “pharmaceutical  preparation”),  and  failure  to 
isolate  the  desired predicate  path.  This  was encountered 
with terms that occur in many predication relationships. In 
these  cases,  “correct”  results  would  be  interspersed 
amongst results linked to the cue term in other ways.

Dissection and Disjunction
Once vectors representing the desired sense of a concept 
have been isolated using this procedure,  it  is possible to 
construct  a  subspace  with  these  vectors  as  bases.  This 
subspace then represents the set {sense1 OR sense2 OR … 
sense n} and can be modeled using quantum disjunction 
(Widdows and Peters 2003), after ensuring the bases of the 
subspace are orthogonal to one another using the Gram-
Schmidt procedure. The association strength between each 
semantic vector and this subspace can then be measured by 
projecting  a  semantic  vector  into  the  subspace  and 
measuring the cosine between the original semantic vector 
and this projection. 

This allows us to broaden the scope of our search. For 
example, we might expand the query in Leap 1 to�=�����
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Conclusion

In  this  paper,  we  develop  and  evaluate  a  model  of 
automated  reasoning  based  on  “logical  leaps”,  in  which 
meaningful  associations  between  concepts  derived  from 
distributional statistics are used to identify candidates for 
connection via a third concept, and identify the nature of 
the relations involved. The chain of predicates constructed 
in  this  manner  can  subsequently  be  processed  using 
symbolic methods. Consequently, the vector-based “logical 
leaps”  approach  relates  to  Gardenfors'  proposal  that 
conceptual  representation  at  a  geometric  level  might 
provide support for symbolic level processes  (Gardenfors 
2000).  While  this  approach  is  able  to  infer  plausible 
connections between concepts, this inference occurs at the 
geometric level,  avoiding the computational complexity of 
extensive  symbolic  inference.  Furthermore,  the  vector 
spaces used for these experiments can be retained in RAM 
to  facilitate  rapid,  dynamic,  interactive  exploration  of 
biomedical concepts to support discovery. Vector operators 
derived from quantum logic show promise as a means to 
direct such searches away from previously trodden paths, 
and exploratory work suggests there may be ways to adapt 
these operators to guide search toward conceptual territory 
of  interest.  Of  particular  interest  for  future  work  is  the 
evaluation of the extent to which these operators might be 
used to model “discovery patterns” (Hristovski, Friedman 
and  Rindflesch  2008),  combinations  of  predications  that 
have been shown useful for literature-based discovery. 
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