
Graded Vector Representations of Immunoglobulins
Produced in Response to West Nile Virus

Trevor Cohen1, Dominic Widdows2, Jason A. Vander Heiden3, Namita T. Gupta3, and
Steven H. Kleinstein4

1 University of Texas School of Biomedical Informatics at Houston
2 Grab Technologies, Inc.

3 Interdepartmental Program in Computational Biology and Bioinformatics, Yale University
4 Departments of Pathology and Immunobiology, Yale School of Medicine

Abstract. Semantic vector models are used to generate high-dimensional vector
representations of words from their occurrence statistics across large corpora of
electronic text. In these models, the occurrence of a word or number in a partic-
ular context is treated as a discrete event, including numerical measurements of
continuous properties. In addition, the sequence in which words occur is often
ignored. In earlier work we have developed approaches to address these limita-
tions, using graded demarcator vectors to represent measured distances in high-
dimensional space. This permits incorporation of continuous properties, such as
the position of a character within a term or a year of birth, into semantic vector
models. In the current paper we extend this work by developing a novel repre-
sentational approach for protein sequences, in which both the positions and the
properties of the amino acid components of protein sequences are represented
using graded vectors. Evaluation on a set of around 100,000 immunoglobulin re-
ceptor sequences derived from subjects recently infected with West Nile Virus
(WNV) suggests that encoding positions and properties using graded vectors in-
creases the similarity between immunoglobulin receptor sequences produced by
cells from ancestral lines known to have developed in response to WNV, relative
to those from other cell lines.

Keywords: Distributional Semantics, Vector Symbolic Architectures, Binary Spatter
Code, Quantum Interactions, Computational Immunology

1 Introduction

The application of quantum-related compositional operators to semantic vector repre-
sentations — vectors that encode the distribution of terms across large text corpora —
has been an active area of inquiry for the Quantum Interactions community since its in-
ception [1]. In these models, the presence of a term in a particular context is considered
as a discrete event - the term is either present or absent, though it may be present more
than once. However, as we have argued previously [2], a vector space model that aims
to provide a holistic account of conceptual representation would also need to represent
continuous properties. Consider for example the phrase “has an average high tempera-
ture of 106◦F in July”, which refers to the city of Phoenix, Arizona. A semantic vector

representation for Phoenix could take into account that the term “106” had been ob-
served, but this would result in a vector representation that is dissimilar to a similarly
constructed vector for the city of Las Vegas, which has an average high temperature
of 105◦F in the same month. Ideally, these semantic vectors would accommodate con-
tinuous values of this sort, resulting in vector representations that are proximal when
similar, but not identical, measurements are encountered.

To this end, in our recent work we have developed an approach to represent both
discrete events and continuous measurements with semantic vector models, using a
quantization technique similar to that employed to model angular momentum in quan-
tum mechanics [3]. This approach was originally developed to encode orthographic
similarity between words, such that words with matching characters in proximal po-
sitions will have similar vector representations [4]. Subsequently, these methods were
extended to the more general case of encoding continuous properties of tabular data [2].
In this paper, we develop these ideas further by encoding both sequence and continuous
properties, to generate vector representations of protein sequences.

The paper proceeds as follows. First we provide some context for the current work,
in relation to immunology and prior Quantum Interactions contributions. Then we intro-
duce the mathematical structures to-be-employed, and their application for the purpose
of encoding the position and properties of amino acids within a sequence. We then
proceed to the empirical component of this paper, in which we evaluate the extent to
which variants of this approach lead to similar vector representations for collections of
immunoglobulin (Ig) receptors expressed by B cell clones from the blood of subjects
recently infected with West Nile Virus (WNV).

2 Background

The human immune system is a complex learning network of cells and molecules that
are responsible for eliminating infections. Despite its inherent complexity, aspects of
the immune system are amenable to computational modeling [5]. B cells are members
of the adaptive immune system that recognize foreign organisms and molecules (anti-
gens), using a receptor known as the Ig receptor. Once a B cell recognizes an antigen,
it undergoes a process of rapid cell division, mutation and selection that leads to gen-
eration of cells with receptor variants having increasing affinity for the antigen. B cells
that, through mutation, develop receptors with high affinity for an intruding antigen
survive and multiply. Those with receptors having low affinity do not. In this way, the
immune system adapts to this antigen by customizing the population of B cells to favor
those with Ig receptors that recognize it effectively. Through several experimental steps,
the DNA sequence of the Ig receptor’s antigen binding region can be determined. This
DNA sequence can then be translated into the sequence of component amino acids that,
in part, encode the binding affinity of the Ig receptor protein.

The technology is available to accomplish such sequencing quickly and inexpen-
sively [6]. These high-throughput sequencing technologies lead to the generation of
large numbers of such sequences, which raises the informatics problem of how best to
index, retrieve and analyze them. Historically, sequence comparisons have been con-
ducted with algorithms that determine the minimum cost of pairwise alignment, using

variants of string edit distance calculated via dynamic programming approaches [7]. A
scalable alternative involves utilizing simpler metrics of comparison such as the ham-
ming distance, which calculates the number of amino acids in common at matched posi-
tions, without considering approximate relationships in position [8]. These algorithms
consider amino acids as discrete symbols, without representing their chemical prop-
erties. Alternatively, the average score of amino acid properties in a particular region
may be considered [9]. Such metrics discard information concerning position in the se-
quence. An algorithm for rapid pairwise comparison that can accommodate variations
in sequence and utilize biochemical properties would be a desirable alternative.

3 Mathematical Structures and Methods

3.1 Random Indexing

Random Indexing (RI) is an efficient method of generating semantic vector represen-
tations of words [10]. The starting point for RI involves generation of random vectors
for the contexts in which terms occur. For example, each document may have a random
vector. Random vectors are high-dimensional in nature (dimensionality on the order of
1,000 for real vectors), and are generated by assigning a small number (on the order of
10) of the elements of a zero vector to +1 or -1 at random. On account of the statisti-
cal properties of high-dimensional space, such vectors have a high probability of being
orthogonal, or close-to-orthogonal to one another. This is reasonably intuitive when
considering sparse vectors with a small number of non-zero values. However, it is also
the case that randomly-constructed densely populated vectors have a high probability
of being far apart in high-dimensions [11], including the binary vectors with an equal
probability of one or zero in each dimension that we will use as a fundamental unit of
representation in the current experiments [12]. RI utilizes several of the fundamental
operators we will apply in the current research. Firstly, RI involves the generation of
mutually close-to-orthogonal random vectors as a fundamental representational unit. In
the current paper, and in accordance with our previous work, we will refer to such vec-
tors as elemental vectors, and the elemental vector for a term will be denoted E(term).
We will use the term “semantic vector” and the denotation S(term) to refer to vectors
that are generated through superposition of component vectors, and the symbol + to
indicate the superposition operation. For example, RI generates semantic term vector
representations by superposing (adding) the random vectors representing each of the n
contexts this term occurs in, and normalizing the resulting vector.

3.2 Vector Symbolic Architectures

Our approach to encoding sequence and properties draw on a family of representational
approaches known as Vector Symbolic Architectures [13] (VSAs). VSAs emerged in
response to the critique that connectionist representations, such as neural networks,
could not support composition of nested structures thought to underlie reasoning and
language, and as such could not provide a comprehensive account of cognition [14]. In
connectionist models, the unit of representation is a vector of activation weights. VSAs

provide the means to generate compositional structures from such vectors, by providing
space-efficient alternatives to Smolensky’s initial application of the tensor product for
this purpose [15]. These alternatives include circular convolution [16] and element-
wise exclusive or (XOR) [17]. In the latter case, the underlying representational unit
is a high- (or hyper-) dimensional binary vector, and the VSA is known as the Binary
Spatter Code (BSC) [17]. These operators, which are known as binding operators, and
will be depicted in this paper with the symbol ⊗, provide the means for composition.
For example, if “temperature” and “106” are represented by vectors, the bound product
of these vectors,

−−−−−−−−−→
temperature ⊗ −→106, can be used to implement binding of the value

“106” to the variable “temperature”. A key feature of binding operators is that they are
invertible, albeit approximately in some cases. Consequently, we would anticipate if
C = A⊗ B then B ≈ C � A, where � represents the inverse of the binding operator,
sometimes called release. This mechanism can be employed to retrieve the value bound
to a variable, or the representation of the variable to which a particular value is bound.
In addition to binding operators, VSAs employ superposition (+) as a compositional
operator. Of note, for the current research the symbol + here indicates probabilistic
superposition of binary vectors rather than the majority rule that is prescribed by the
BSC. The number of 1s and 0s in each dimension are tallied across the component
vectors, and the superposition is generated probabilistically, such that P (x = 1) in any
dimension is equal to count(x = 1)÷ count(x = 1 ∪ x = 0).

These operators have different functions: superposition of two vectors produces
a vector that is similar to both of its components. Binding produces a vector that is
dissimilar from them. The latter property is important for the function of VSAs, as it
means that the same value bound to different variables will produce dissimilar vectors:
similarity(

−−→
born⊗−−→1917,

−−→
died⊗−−→1917) ≈ 0. The use of elemental vectors as a funda-

mental representational unit entails that values bound to different variables will not be
confused with one another: if E(born) ≈⊥ E(died), then E(born) ⊗ E(1917) ≈⊥
E(died)⊗E(1917). However, relaxing the constraint that these units of representation
be mutually close-to-orthogonal provides the means to encode continuous values, such
as relative position within a sequence, into semantic vector representations.

3.3 Encoding Sequence

Our approach to encoding sequences was initially developed to encode orthographic
representations of words [4]. Consider the word “monk”. One way to use VSAs to gen-
erate an orthographic representation of this term would be to treat positions as variables,
and characters as values [18], exemplifying an approach that is known as “slot coding”
[19]. We can then generate an orthographic vector for “monk” as follows:

O(monk) = E(m)⊗ E(1) + E(o)⊗ E(2) + E(n)⊗ E(3) + E(k)⊗ E(4)

However, this approach would result in orthographic vector representations that are
similar if, and only if, two terms have identical characters in identical positions. This
would be inconsistent with the highly flexible nature of human orthographic encoding,
which is robust to transposition of characters, amongst other perturbations of sequence.
This limitation also applies to VSA-based approaches to encoding sequence that involve

the exclusive use of permutations to encode position [20], where a permutation, such as
shifting all elements n positions to the right, is applied to elemental vectors to indicate
their position. A more flexible VSA-based approach to encoding sequence involves the
generation of bound products representing n-grams, such as the bigram E(w) ⊗ E(o)
[21, 18]. However, the need to encode multiple n-grams and the encoding of “skip-
grams” that permit wildcard characters results in a large number of encoding operations
for each word - for example, up to fifteen superpositions and sixteen binding operations
to generate a bi- and uni-gram based orthographic representation of a five-letter word
[22]. In addition, the resulting representations would only be similar for terms with
identical bigrams (or skipgrams). Similarity is a measure of the extent to which discrete
symbolic representations of character subsequences match one another exactly.

Our approach to encoding sequence is different, in that character positions are
treated continuously. This is accomplished by generating a pair of mutually close-to-
orthogonal demarcator vectors (D(value)), which we will call D(α) and D(ω), and
interpolating between them. For example, consider again the word “monk”. Given four
character positions, p1, p2, p3 and p4, and a pair of approximately orthogonal demar-
cator vectors D(α) and D(ω), we would construct demarcator vectors for these po-
sitions such that D(p1) = 4

5D(α) + 1
5D(ω), D(p2) = 3

5D(α) + 2
5D(ω), D(p3) =

2
5D(α) + 3

5D(ω), and D(p4) = 1
5D(α) + 4

5D(ω) 5. In high dimensions, this results
in a set of demarcator vectors in which sim(D(p1), D(p2)) ≈ sim(D(p2), D(p3)) >
sim(D(p1), D(p3)) > sim(D(p1), D(p4)) [4]. With these demarcator vectors estab-
lished an orthographic vector for the word monk, and similarly for any other four-letter
word, can be generated as follows:

O(monk) = E(m)⊗D(p1) + E(o)⊗D(p2) + E(n)⊗D(p3) + E(k)⊗D(p4)

The resulting representation will be similar to the orthographic vectors for words that
have the same characters in similar positions. Better character alignment results in
higher similarity. Examples and results are presented in [4], which also discusses the fit
between the model and findings from cognitive research on human word recognition.

3.4 Encoding Properties with Graded Values

Subsequently, this approach was generalized as a means to encode continuous values.
The procedure in this case involves generating D(α) and D(ω) for each continuous
property of a concept to be represented with a semantic vector. For example, the vector
for a city may encode its average temperature, population and square mileage. Then, the
minimum (vmin) and maximum (vmax) of each property is calculated . A vector repre-
senting any value v(c) of this continuous property is then generated by interpolation:

D(vc) =
vmax − v(c)
vmax − vmin

D(α) +
v(c)− vmin

vmax − vmin
D(ω).

For a concept with multiple attributes, an elemental vector is generated for each at-
tribute. A semantic vector for this concept can then be generated by binding the el-
emental vector for each attribute, E(Ai) to the demarcator vector representing this

5 With binary vectors, superposition occcurs probabilistically - if D(α) has a 1 as its first ele-
ment and D(ω) does not, D(p1) is generated with a 0.8 probability of a one in this position.

attribute’s value D(Vi), and superposing the resulting attribute-value bound product
vectors: S(C) =

∑n
i=1E(Ai)⊗D(Vi). Examples and results are presented in [2].

3.5 Quantum Structures

The encoding process utilized for this purpose draws upon a number of mathematical
structures that relate to Quantum Theory. The quantization procedure used to generate
demarcator vectors is similar to that used for modeling angular momentum in quantum
mechanics [3]. The binding operator employed is equivalent to the use of circular convo-
lution in Circular Holographic Reduced Representations, a complex vector based VSA,
with phase angles quantized to 0 and π [16]. Circular convolution in turn derives from
the tensor product (for a concise account of the relationship between the tensor product
and the binding operators employed in different VSAs, see [23]), used in quantum me-
chanics to represent composite systems. As has been noted previously, superpositions
of role-filler bound products (such as E(m)⊗D(p1)) constitute entangled states [24].
Finally, the variant of the hamming distance employed to compare sequence vectors to
one another is equivalent to the cosine metric, and as such bears correspondence to the
use of projection operators to estimate the probability of observations.

4 Protein Sequences and Amino Acid Properties

In this section, we will describe how we combine our approach to encoding sequence
with our approach to encoding continuous values, to generate vector representations of
protein sequences. In addition, we employ a permutation operator to enable the algo-
rithm to distinguish between regions of interest. The permutation operator is used in the
context of VSAs to dissociate vectors from one another [25]. The general idea is that,
once permuted, a high-dimensional vector is highly likely to be close-to-orthogonal to
all other vectors in the space - including the vector to which the permutation operator
was applied. In the context of modeling sequence, permutation has been used to ensure
that words in each position of a sliding window are treated differently [20]. Following
this approach, we use a permutation operation in which we shift the bits of a binary
vector n positions to the right, with a different n for each region of interest. For compu-
tational convenience we perform this operation blockwise, shifting 64-bit blocks to the
right rather than individual bits. An overview of our approach to encoding sequence is
provided in Figure 1. The enumeration in the list below refers back to the numbers 1-5
in the rounded rectangles in this figure.

1. DNA sequences are segmented into three-character codons, and translated into
amino acids in accordance with the genetic code [26].

2. Representations of amino acids are composed from demarcator and elemental vec-
tors representing property value pairs, as described in Section 3.4. Encoded prop-
erties are shown in Table 1. In the case of charge, amino acids without charge were
given the value of zero, and other values were converted to charge at pH 7.4 using
the Hendersen- Hasselbach equation, such that charge = (1 + 10(7.4−pK[X]))−1

for pK[X] ∈ {pK[R], pK[H], pK[K]} and charge = −(1 + 10−(7.4−pK[X]))−1

AMINO ACID SEQUENCE

CODON

T A G A A

DNA SEQUENCE

AAG

AMINO
ACID

Glutamic
Acid

(Glu/E)

has properties

-3.5

13.57

acidic

-0.9995

12.3

acceptor

E

hydropathy

bulkiness

chemical

charge

polarity

hydrogen

char

REGION

2

1

3

4

CLONAL LINEAGE

5

Fig. 1. Overview of encoding processes.

for pK[X] ∈ {pK[D], pK[E], pK[C], pK[Y]} where pK[X] is the negative log
of the acid dissociation constant for the amino acid residue X . Categorical values
were encoded as the bound product of elemental vectors representing the category
and the value concerned. Unmapped codons that do not conform to the genetic code
are represented by elemental vectors.

3. Permutation is applied to differentiate regions of a protein sequence from one an-
other. We applied permutations to distinguish between each of the Complementarity
Determining Regions (CDR1-3) and Framework Regions (FWR1-3), as defined by
the IMGT numbering scheme [27], when encoding structure. These regions were
assigned permutations of 1 through 6 64-bit blocks to the right (P+1 to P+6).

4. Graded vectors are employed to encode position within a region. For each encoded
region, the vector representation of each amino acid is bound to a demarcator vector
indicating its position within this region.

5. Vector representations of sequences, composed from region vectors via superposi-
tion, are in turn superposed to generate representations of clonal lineages, where
a clonal lineage is defined as the population of B cells that are descended from a
common ancestor B cell. The vector for a clonal lineage is the superposition of the
vectors for all the Ig receptor sequences of that cell population.

5 Evaluation

To evaluate the model, we employed a set of 98,402 Ig sequences derived from three in-
dividuals identified as recently infected with the WNV [28]. These sequences originated
from 52,505 unique clonal lineages, with clonal lineage membership determined using
the Change-O [29] toolkit and the parameters specified in Tsioris and Gupta et al, 2015
[28]. Three of these clones were identified as producing WNV-specific antibodies using
a single-cell nanowell approach to identify WNV-specific B cells [28, 30]. We set out to

Table 1. Encoded properties for partial list of amino acids (10 of 20).

hydropathy bulkiness chemical charge polarity hydrogen char
Ala 1.8 11.5 aliphatic 0 8.1 none A
Arg -4.5 14.28 basic 0.9999 10.5 donor R
Asn -3.5 12.82 amide 0 11.6 donor/acceptor N
Asp -3.5 11.68 acidic -0.9997 13 acceptor D
Cys 2.5 13.46 sulfur -0.0736 5.5 none C
Gln -3.5 14.45 amide 0 10.5 donor/acceptor Q
Glu -3.5 13.57 acidic -0.9995 12.3 acceptor E
Gly -0.4 3.4 aliphatic 0 9 none G
His -3.2 13.69 basic 0.1118 10.4 donor/acceptor H
Ile 4.5 21.4 aliphatic 0 5.2 none I

evaluate the extent to which the vector representation of each WNV-specific clonal lin-
eage could serve as a cue to retrieve the remaining two, amongst the 52,504 possibilities
(the probability of this occurring by chance is vanishingly small, at 3.8092e−5).

To evaluate the utility of encoding structure and amino acid properties, we tested
several configurations of the model. These are shown in Table 2, and include graded-
vector encoding of both structure and property in accordance with the entirety of Fig-
ure 1 (GrSP); encoding structure only, without encoding amino acid properties (GrS);
ignoring structure and treating the protein sequences as “bags” of either amino acids
(BoAA) or amino acid properties (BoP); and “slot coding” approaches in which vec-
tor representations of either amino acids (SloAA) or amino acid properties (SloP) are
bound to elemental vectors representing their position within the protein sequence, such
that the similarity function requires finding the same (SloAA) or a similar (SloP) amino
acid, in exactly the same position as that encountered in a cue sequence. In all cases,
52,205 “clone vectors” were generated, each one representing the repertoire of Ig se-
quences derived from a single clonal lineage.

For each of the model variants shown in Table 2, we generated high-dimensional
binary vectors at six different dimensionalities between 1024 and 32,768 (210−215). For
the sake of reproducibility, we generated elemental vectors using a quasi-deterministic
approach in which the pseudo-random number generator is seeded with a hash function
derived from the term-to-be-represented [31]. This preserves the desirable statistical
property of near-orthogonality, while ensuring that the influence of random overlap
between elemental vectors is consistent across experiments. For each model, and at each
dimensionality, we used the vector representations of each of the three WNV-specific
clones as cues. Each cue vector was compared against the other 52,504 clone vectors
in the space, which were rank ordered with respect to their similarity, with similarity
estimated as 1 − 2

n hamming distance (HD) 6. Generation and comparison of high-
dimensional binary vectors, including graded vectors, was conducted using the open
source Semantic Vectors package [32]. In each case, the ranks of the vectors for the
other two WNV-specific clones were recorded.

6 This corresponds to the cosine metric if binary vectors are treated as vectors in {1,-1}
not {1,0}. For example, 1 - (2/4)*HD(1110, 1111) = 0.5, and cos((0.5,0.5,0.5,-0.5) ,
(0.5,0.5,0.5,0.5)) = 0.5 (with 0.5 for normalized vector components after division by

√
4).

Table 2. Summary of models across 36 cue-by-target-by-dimensionality combinations.
Rgn=region encoded via permutation. Pos=position encoded, either with graded vectors (Gr),
or with slot coding (Sl).Prop=Properties encoded. AA=Amino Acid.

Model Rgn Pos Prp Description
GrSP X Gr X “Graded Structure and Properties”: property-based AA vectors bound to

graded position vectors, with permuted regions.
GrS X Gr “Graded Structure”: elemental AA vectors bound to graded position vec-

tors, with permuted regions.
BoP X “Bag-of-Properties”: sum of property-derived AA vectors.
BoAA “Bag-of-amino-acids”: sum of elemental vectors for AAs.
SloP Sl X “Slotted Properties”: BoP + bind to elemental position vectors.
SloAA Sl ‘Slotted Amino Acids”: BoAA + bind to elemental position vectors.

6 Results

The results of these experiments are shown in Table 3, which provides the median and
minimum rank across the 36 searches (6 dimensionalities x 3 cues x 2 targets), and
counts of the number of these examples that fell within the top-ranked results at differ-
ent thresholds. All of the models evaluted reliably recover WNV-specific clonal lineages
within the top 1,000 results (the probability of this occurring at random is around .02).
The graded vector based methods (GrSP and GrS) perform best with respect to the
number of occurrences of WNV-specific lineages ranked within the top 100 results and
above, and the GrSP method has the lowest median rank of retrieval across all cases.

Incorporating information about amino acid properties (grey columns) improves the
performance of models that incorporate structure (GrSP>GrS and SloP> SloAA), and
vice-versa - GrSP and SloP also outperform BoP with respect to proximal (e.g. recall
within top 100) and overall (median rank) performance. However, the effect of incorpo-
rating property information when structure is ignored (BoP vs BoAA) is more nuanced,
with slightly better recall of higher-ranked results but worse performance overall. These
two structure-agnostic models are competitive with respect to their ability to recover
WNV-specific lineages in the top 1,000 results, but seldom recover these within the top
100. Of the models that incorporate structure, the graded vector approaches, which ac-
commodate approximate alignment, outperform the tighter constraints of the “slot cod-

Table 3. Summary of results across all examples and dimensionalities. Best results in each row
are in bold. Models incorporating amino acid properties are in grey columns.

GrSP GrS BoP BoAA SloP SloAA
MEDIAN 877.5 3857.5 4980 1416 2940.5 6051.5
MIN 5 4 33 98 34 26
<= 10 4 3 0 0 0 0
<= 50 7 6 1 0 2 1
<= 100 10 10 1 1 4 1
<= 500 12 14 13 17 10 5
<= 1000 18 15 17 18 11 7

Table 4. Minimum, median and maximum rank for productive cue:target pairs (MIN ;MED
MAX

).
Best MIN in bold, best MED underlined, best MAX in italics if ≤ 1000. Ranks > 1000 in grey
text. Models incorporating properties in grey columns. C/T = Cue

Target
.

C/T GrSP GrS BoP BoAA SloP SloAA
125584
314052

26; 54
111

45; 57.5
9323

116; 267.5
337

107; 227.5
306

228; 349.5
14489

1632; 5342.5
7292

314052
125584

510; 1000
3056

3584; 7608
32883

324; 429
745

317; 472.5
599

1917; 2296.5
39694

1802; 8434.5
9512

314052
68974

520; 877.5
16851

96; 560.5
4131

15230; 20214
42451

10711; 14808
16032

1997; 3199
10117

409; 2208
2842

68974
314052

5; 9
317

4; 12.5
387

33; 501.5
8390

98; 165
418

34; 53.5
339

26; 350.5
924

ing” approaches. SloAA performs worst by most metrics, which is not surprising as it
is the model with the tightest constraints, with insistence upon an exact match between
both position and specific amino acid. Table 4 summarizes performance for productive
cue:target pairs, excluding 125584:68974 which was not retrieved within the top 1000
results in either orientation. This pattern suggests one target, 314052, is more readily
retrieved than others. One explanation for this might be that more Ig sequences related
to this clone appear in the data set (n=44 vs n=5 and n=12 for 68974 and 125584 re-
spectively). So the clone vector representing it exhibits a broader range of WNV-related
characteristics. Furthermore, superposition of these sequences will emphasize charac-
teristics that are preserved across the ancestral lineage. From a biological perspective,
these should be the characteristics that define specificity for WNV.

7 Discussion

In this paper, we develop and evaluate a method through which the position and proper-
ties of components of a protein sequence can be encoded into high-dimensional vector
representations, such that proteins with similar amino acids in similar positions will
have similar vectors. These vectors can be compared efficiently using a variant of the
hamming distance. Furthermore, they can be superposed to represent the Ig sequence
collection of a particular clonal lineage. Evaluation reveals encoding amino acid prop-
erties improves retrieval of one WNV-binding clonal lineage when another is used as
a cue, if sequence and structure are encoded also. Encoding sequence and structure
improves retrieval with or without encoding these properties, if position is not rigidly
encoded. Of note, it is not necessarily the case that clonal lineages ranked higher than
the desired targets are not WNV-specific. It may prove the case that our approach has
identified other sensitized clones - a possibility that would need to be evaluated empir-
ically. Nonetheless, these results suggest our approach may provide a scalable solution
to the problem of approximately matching protein sequences, which is a fundamental
problem in computational genomics. In our future work, we will continue to develop
and evaluate this approach. In particular, we will incorporate a broader range of amino
acid properties, and evaluate the approach in the context of larger data sets.

8 Conclusion

In this work, we adapt approaches to encoding sequence and continuous values into se-
mantic vector representations to the task of representing protein sequences. Evaluation
suggests that encoding amino acid properties is of value for the identification of proteins
with similar immunological specificity, if and only if the position of these amino acids
is encoded also. However, it is preferable that this encoding be flexible, permitting ap-
proximate match in position. Our approach transforms the computationally demanding
task of approximate alignment of sequence into the computationally convenient task of
measuring the similarity between semantic vector representations. Consequently, it may
be applicable to situations requiring rapid evaluation of large numbers of sequences.

Acknowledgments: This research was supported by NIH/BD2K supplement
R01LM011563-S1 and NIH/BD2K supplement R01AI104739-S1.

References

1. S. Clark and S. Pulman, “Combining symbolic and distributional models of meaning.,” in
AAAI Spring Symposium: Quantum Interaction, pp. 52–55, 2007.

2. D. Widdows and T. Cohen, “Graded semantic vectors: An approach to representing graded
quantities in generalized quantum models,” in Quantum Interaction, pp. 231–244, Springer,
2015.

3. D. Bohm, Quantum Theory. Prentice-Hall, 1951. Republished by Dover, 1989.
4. T. Cohen, D. Widdows, M. Wahle, and R. Schvaneveldt, “Orthogonality and orthography:

introducing measured distance into semantic space,” in Quantum Interaction, pp. 34–46,
Springer, 2013.

5. S. H. Kleinstein, “Getting started in computational immunology,” PLoS Comput Biol, vol. 4,
no. 8, p. e1000128, 2008.

6. J. Benichou, R. Ben-Hamo, Y. Louzoun, and S. Efroni, “Rep-seq: uncovering the im-
munological repertoire through next-generation sequencing,” Immunology, vol. 135, no. 3,
pp. 183–191, 2012.

7. R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: proba-
bilistic models of proteins and nucleic acids. Cambridge university press, 1998.

8. K. Tsioris, N. T. Gupta, A. O. Ogunniyi, R. M. Zimnisky, F. Qian, Y. Yao, X. Wang, J. N.
Stern, R. Chari, A. W. Briggs, et al., “Neutralizing antibodies against west nile virus iden-
tified directly from human b cells by single-cell analysis and next generation sequencing,”
Integrative Biology, vol. 7, no. 12, pp. 1587–1597, 2015.

9. Y.-C. Wu, D. Kipling, H. S. Leong, V. Martin, A. a. Ademokun, and D. K. Dunn-Walters,
“High-throughput immunoglobulin repertoire analysis distinguishes between human IgM
memory and switched memory B-cell populations.,” Blood, vol. 116, pp. 1070–8, aug 2010.

10. P. Kanerva, J. Kristofersson, and A. Holst, “Random indexing of text samples for latent
semantic analysis,” in Proceedings of the 22nd Annual Conference of the Cognitive Science
Society, vol. 1036, 2000.

11. D. Widdows and T. Cohen, “Reasoning with vectors: a continuous model for fast robust
inference,” Logic Journal of IGPL, p. jzu028, Nov. 2014.

12. P. Kanerva, Sparse distributed memory. Cambridge, Massachusetts: The MIT Press, 1988.
13. R. W. Gayler, “Vector symbolic architectures answer Jackendoff’s challenges for cognitive

neuroscience,” in In Peter Slezak (Ed.), ICCS/ASCS International Conference on Cognitive
Science, (Sydney, Australia. University of New South Wales.), pp. 133–138, 2004.

14. J. A. Fodor and Z. W. Pylyshyn, “Connectionism and cognitive architecture: A critical anal-
ysis,” Cognition, vol. 28, no. 1-2, pp. 3–71, 1988.

15. P. Smolensky, “Tensor product variable binding and the representation of symbolic structures
in connectionist systems,” Artificial intelligence, vol. 46, no. 1, pp. 159–216, 1990.

16. T. A. Plate, Holographic Reduced Representations: Distributed Representation for Cognitive
Structures. CSLI Publications, 2003.

17. P. Kanerva, “Binary spatter-coding of ordered k-tuples,” Artificial Neural Networks—ICANN
96, pp. 869–873, 1996.

18. T. Hannagan, E. Dupoux, and A. Christophe, “Holographic string encoding,” Cognitive sci-
ence, vol. 35, no. 1, pp. 79–118, 2011.

19. C. J. Davis and J. S. Bowers, “Contrasting five different theories of letter position coding: Ev-
idence from orthographic similarity effects.,” Journal of Experimental Psychology: Human
Perception and Performance, vol. 32, no. 3, p. 535, 2006.

20. M. Sahlgren, A. Holst, and P. Kanerva, “Permutations as a means to encode order in
word space.,” in Proceedings of the 30th Annual Meeting of the Cognitive Science Society
(CogSci’08), July 23-26, Washington D.C., USA., 2008.

21. M. N. Jones, W. Kintsch, and D. J. Mewhort, “High-dimensional semantic space accounts of
priming,” Journal of memory and language, vol. 55, no. 4, pp. 534–552, 2006.

22. G. E. Cox, G. Kachergis, G. Recchia, and M. N. Jones, “Toward a scalable holographic
word-form representation,” Behavior research methods, vol. 43, no. 3, pp. 602–615, 2011.

23. D. Aerts, M. Czachor, and B. De Moor, “Geometric analogue of holographic reduced repre-
sentation,” Journal of Mathematical Psychology, vol. 53, no. 5, pp. 389–398, 2007.

24. D. Aerts and M. Czachor, “Quantum aspects of semantic analysis and symbolic artificial
intelligence,” J. Phys. A: Math. Gen., vol. 37, pp. L123–L132, 2004.

25. P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed rep-
resentation with high-dimensional random vectors,” Cognitive Computation, vol. 1, no. 2,
pp. 139–159, 2009.

26. F. Crick, L. Barnett, S. Brenner, and R. J. Watts-Tobin, General nature of the genetic code
for proteins. Macmillan Journals Limited, 1961.

27. M.-P. Lefranc, C. Pommié, M. Ruiz, V. Giudicelli, E. Foulquier, L. Truong, V. Thouvenin-
Contet, and G. Lefranc, “Imgt unique numbering for immunoglobulin and t cell receptor
variable domains and ig superfamily v-like domains,” Developmental & Comparative Im-
munology, vol. 27, no. 1, pp. 55–77, 2003.

28. K. Tsioris, N. T. Gupta, A. O. Ogunniyi, R. M. Zimnisky, F. Qian, Y. Yao, X. Wang, J. N. H.
Stern, R. Chari, A. W. Briggs, C. R. Clouser, F. Vigneault, G. M. Church, M. N. Garcia,
K. O. Murray, R. R. Montgomery, S. H. Kleinstein, and J. C. Love, “Neutralizing antibodies
against West Nile virus identified directly from human B cells by single-cell analysis and
next generation sequencing,” Integr. Biol., vol. 7, no. 12, pp. 1587–1597, 2015.

29. N. T. Gupta, J. A. Vander Heiden, M. Uduman, D. Gadala-Maria, G. Yaari, and S. H. Kle-
instein, “Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire
sequencing data: Table 1.,” Bioinformatics, vol. 31, pp. 3356–3358, oct 2015.

30. A. O. Ogunniyi, B. A. Thomas, T. J. Politano, N. Varadarajan, E. Landais, P. Poignard, B. D.
Walker, D. S. Kwon, and J. C. Love, “Profiling human antibody responses by integrated
single-cell analysis,” Vaccine, vol. 32, pp. 2866–2873, may 2014.

31. M. Wahle, D. Widdows, J. R. Herskovic, E. V. Bernstam, and T. Cohen, “Deterministic
binary vectors for efficient automated indexing of medline/pubmed abstracts,” in AMIA An-
nual Symposium Proceedings, vol. 2012, p. 940, American Medical Informatics Association,
2012.

32. D. Widdows and T. Cohen, “The semantic vectors package: New algorithms and public tools
for distributional semantics,” in Fourth IEEE International Conference on Semantic Com-
puting (ICSC), 2010.

