
Graded Semantic Vectors: An Approach to Representing
Graded Quantities in Generalized Quantum Models

Dominic Widdows1 and Trevor Cohen2

1 Microsoft Bing
2 University of Texas School of Biomedical Informatics at Houston

Appeared in 9th international conference on Quantum Interaction (QI-2015),
Filzbach, Switzerland, July 14-17, 2015

Abstract. Semantic vector models are traditionally used to model concepts de-
rived from discrete input such as tokenized text. This paper describes a technique
to address continuous and graded quantities using such models. The method pre-
sented here grows out of earlier work on modelling orthography, or letter-by-letter
word encoding, in which a graded vector is used to model character-positions
within a word. We extend this idea to use a graded vector for a position along any
scale. The technique is applied to modelling time-periods in an example dataset
of Presidents of the United States. Initial examples demonstrate that encoding
the time-periods using graded semantic vectors gives an improvement over mod-
elling the dates in question as distinct strings. This work is significant because it
fills a surprising technical gap: though vector spaces over a continuous ground-
field seem a natural choice for representing graded quantities, this capability has
been hitherto lacking, and is a necessary step towards a more complete vector
space model of conceptualization and cognition.

1 Introduction and Outline

This paper proposes and demonstrates a general approach for encoding naturally graded
quantities within semantic vector models. This is important in theory for understanding
how discrete relationships (such as “a cheetah is a land animal”) and graded quantities
(such as “a cheetah can reach speeds of 70 miles-per-hour”) might be combined in a
single cognitive model. It’s important in practice for the engineering of rich search and
navigation systems (for example, for finding books-for-sale on a particular topic within
a given price-range). These motivations are discussed more thoroughly in Section 2.

The paper describes one approach to solving this problem. Section 3 introduces the
method with a first example case, the challenge of modelling orthography. That is, in-
stead of treating each word as atomic, it is modelled as a collection of characters bound
to different positions. Vectors representing the positions of letters within a written word
are thus a first example of graded semantic vectors. Section 4, at the heart of the paper,
describes how the technique used to model orthography can be generalized to cover any
number of other graded scales, and concepts with attributes that take values along these
scales. This section also describes some of the mathematical properties of this model

which make it quantum-like: some of these are well-known, some are relatively novel,
and some are proposed for further investigation.

The rest of the paper is devoted to worked examples demonstrating the potential of
the method. Section 5 explains how this can be extended to temporal concepts in mod-
elling a table of information about Presidents of the USA. Section 6 shows how prop-
erties of particular items can be recovered, compared, and inferred from the semantic
vector model. Finally, Section 7 proposes further work expanding these developments.

2 The Problem of Graded Representation

Any attempt at a complete account of cognition must sooner or later address the chal-
lenge of comparing graded quantities. Such notions include larger and smaller, higher
and lower, before and after, nearer and farther, faster and slower, and so on. It is not
enough to classify items into discrete buckets such as ‘small, medium and large’, or
‘ancient, medieval, and modern’, because while these may work for some original pur-
pose, situations inevitably arise wherein a coarser classification must become more fine-
grained to serve some new situation.

Our typical approach to this challenge is to introduce numerical scales with some
agreed units, such as seconds for time, meters for distance, degrees for temperature,
currency units for money, and so on. Given suitable measuring equipment, real world
situations can be described using these numerical scales and compared appropriately:
for example, the question of whether the temperature in a room is above or below a
given target temperature can be transformed to a question of comparing numbers. This
comparison can be carried out in a computing machine, for example by comparing the
corresponding digits in binary representations of the measured ambient temperature
and the desired target temperature. Such a system would typically not be thought of
as intelligent: it can compare graded quantities that are usefully related to the concepts
too hot, too cold, and the desired state of just right, but in a closed way that is quite
removed from the way humans communicate about these concepts and that does not
learn or generalize without external help.

On the other hand, recent decades have established firmly systems that do learn and
generalize directly from the way humans communicate, but not in a way that supports
the representation of graded quantities. Here we are referring to semantic vector models,
a family of models that build representations from large corpora of natural language [1].
Models of this sort have usually been constructed from discrete data, such as tokenized
text: canonical early examples of this methodology include the vector space model for
search [2] and Latent Semantic Analysis [3]. The connection with generalized quantum
models arises from the key observation that the Hilbert spaces and projections used
quantum mechanics are from the same family as the vector spaces and similarity mea-
surements used in semantic vector models [4, 5], albeit with some customary differences
such as the use of complex coordinates in quantum mechanics and real coordinates in
natural language applications [6].

In natural language processing, these methods can be used to learn quite success-
fully that (for example) hot and cold are related to one another, possibly even that they
are antonyms, and that they are also related to temperature. But this is typically done

by mapping hot and cold to individual points in a vector space, without any notion that
there is a scale of physical temperature values, that hot and cold describe regions in this
value space (subject to context and vagueness), and that other terms such as warm, cool,
frigid, etc. also describe regions on this scale.

Many corpus-based techniques deliberately neglect this challenge, for example, by
replacing all strings of digits with a single token such as NUMBER in preprocessing
(see e.g., [7], though the practice is widespread and standard). Obviously this throws
away a lot of information with intended meaning. This raises the challenge of com-
bining such text-based similarity models with information from graded and continuous
observations. Given that the vector space models used in distributional semantics are
naturally continuous, combining such modalities should in theory not be too difficult.

In the rest of this paper we demonstrate one such combined model. The example
applications include string similarity, exploring tabular data, and finding nearby terms
in document search. Each of these application areas already has a well-developed sci-
entific literature and engineering practices, and the goal of this paper is not to claim
that graded vector techniques are superior to these established practices. Instead we
show that graded vector techniques can at least be applied to a wide range of areas with
interesting results.

3 First Example: Encoding of Orthography in Semantic Vectors

This section introduces graded semantic vectors using a motivating example. Our first
application of vector representations to model graded quantities and relationships was
in encoding orthography, that is, in modelling a word as an ordered list of characters in
given positions. This work was presented at an earlier Quantum Interaction conference
[8]. This paper also discusses previous work in this area, including alternative encoding
and similarity measurement techniques such as Levenshtein distance.

Orthographic representation involves various challenges. It is motivated psycholog-
ically (trying to reproduce human behavior when reading strings of alphabetic charac-
ters) and technologically (for example for spelling correction). Such a system should
recognize that line and link are written similarly, it should see similarities between nile
and line but should still distinguish them, and so on. The system should have a way to
give a lower weight to internal differences, because humans are particularly robust to
word-internal character changes.

The solution technique presented in [8] is outlined in Figure 1, and illustrates much
of the machinery that will be used more generally in this paper. We start with distinct
vectors for each character in the alphabet to be used. One approach is to select these
randomly. (Note that throughout this paper the notation for a concept and the vector
representing that concept will often be conflated, so in vector equations w will often
refer to the vector representing the character w.)

The simplest way to build a word vector out of the vectors for its constituent charac-
ters is to add these character vectors together to make word vectors, for example, given
vectors for the characters l, i, n and e, the vector for the word line would be l+i+n+e.
However, due to the commutativity of vector addition, this process leads to exactly the
same result for the word nile.

4p1

α ω

O

+ ++l i n ep2 p3 p

Fig. 1. Interpolation to generate four demarcator vectors and encode the string line.

Table 1. Pairwise similarities between orthographic vectors for line and other words.

line line 1.0 line lint 0.73
line lime 0.73 line nile 0.76
line file 0.62 line curve 0.32
line lie 0.82 line of -0.02

This directional encoding problem is often addressed by introducing another pair-
wise operator on vectors, known as a “binding” operator, such as the convolution prod-
uct. That is, for two vectors a and b, there is a product a⊗ b defined in such a way that
it is naturally dissimilar to both a and b, but if a and a′ are similar then a⊗ b and a′ ⊗ b
are also similar. Binding operators have a natural inverse, which we shall refer to as a
“release” operator.

Now suppose we define vectors for each of the positions in a word: for example, for
a word with four letters, these might be written p1, p2, p3, and p4. Then the string line
will become represented as l⊗p1 + i⊗p2 +n⊗p3 +e⊗p4. This leaves the question of
how to define the vectors pi. This is done by interpolation between a pair of demarcator
vectors which we will call α and ω. These can be selected at random (which in high
dimensions means they will be roughly orthogonal), or using some other method. Then
p1 = α, p2 = 2

3α + 1
3ω, p3 = 1

3α + 2
3ω, and p4 = ω. This whole setup is depicted in

Figure 1.
Some examples of the similarities between pairs of words obtained using this method

are shown in Table 1. These pairwise similarities were obtained using 200-dimensional
complex vectors, with random vectors for the vector for each letter and the α and ω
vectors, circular convolution for the binding operation (which for complex vectors is
conveniently given by the pairwise addition of complex arguments [9]), and cosine
similarity as the similarity measure.3

These results were computed using the Semantic Vectors package, a freely-available
open-source software package described in [6]. It’s easy to see that words that ‘look’
similar to one another have higher similarity scores. Moving letters around reduces
similarity, as does substituting one letter for another. Vectors for words with different
numbers of letters are produced in the obvious way by dividing the distance between α

3 For more on the use of complex and binary vectors in such representations, see [6, 10].

and ω vectors appropriately. Examples and results from using this method are presented
in [8], which also reviews some of the observed cognitive features of lexical encoding in
human word recognition experiments, and shows that the orthographic encoding tech-
nique described here parallels many of these features.

4 A General Approach to Encoding Graded Attributes

The method for orthographic encoding summarized in the previous section can readily
be adapted to model all kinds of other graded concepts. The basic idea is the same
throughout. Let C be a set of concepts we wish to model, and let f : C → R be a
mapping from C to the real numbers that describes a property of the concepts in C.
For example, f may be a function that takes a data record for a particular vehicle, and
returns its weight or fuel efficiency.

Our goal is to create a semantic vector model for these concepts, so that more similar
concepts are closer to one another in this space, and other properties and behaviors can
ideally be recovered and predicted. This is done using a Vector Symbolic Architecture
or VSA [11], which is a vector space V equipped with a binding operator⊗ : V ×V →
V , such as as the convolution product of complex vectors introduced in Section 3. The
symbol ⊗ is adapted from the tensor product symbol used in linear algebra. Many
applications of vector composition, including quantum mechanics, and more recently
artificial intelligence (e.g., [9, 10]) have been explored. Throughout this paper, the result
of binding is a vector in the original space rather than a higher order tensor or any other
object. The algebraic properties of VSAs in general, the computational properties of
several example implementations, and related work in this rapidly developing area is
discussed in several papers including [12, 10].

To encode tabular data, demarcator vectors α and ω are selected just as in Section 3.
The, for each function f , its range over the whole of C is computed, giving the mini-
mum value fmin ∈ R and maximum value fmax ∈ R of f over C. A value f(c) ∈ R is
then modelled by interpolation just as in the orthographic example, by the vector

D(f(c)) =
fmax − f(c)

fmax − fmin
α+

f(c)− fmin

fmax − fmin
ω.

The subtractions in this equation are merely shorthand for distances when we know that
one quantity is larger than another: the equation can perhaps be most easily understood
as “a vector between α and ω representing f(c) in proportion to its distance from fmin

and fmax”. Global information about the range of f over the whole ofC is necessary for
f(c) to be computed, which has so far been accomplished by preprocessing the entire
dataset before indexing the individual concepts.

Since each concept may have multiple attributes (there are potentially many func-
tions f), it is important to record which attribute took which value. The binding oper-
ation features here also. An elemental vector E(f) is generated for each function f .
Elemental vectors are described in [10] and earlier works: they are used as building
blocks for learning semantic vectors, and can be obtained in many ways. Thanks to the
near-orthogonality of most vectors in high-dimensional spaces, even random allocation

guarantees near-orthogonality of elemental vectors, which is enough to provide good
results in many applications.

Now we can easily define a semantic vector S(c) for each concept in C, using the
definition

S(c) =
∑

E(f)⊗D(f(c)), (1)

where the sum is taken over all the available functions f and uses the standard vector
sum operator +.

4.1 Generalized Quantum or Quantum-like Properties

The Quantum Interaction audience will be particularly interested to know what prop-
erties make this a generalized quantum or quantum-like representation. These include
properties of semantic vector models in general:

– The use of Hilbert spaces to model concepts and the scalar product and projection
operators to measure similarity.

– The geometric foundation this gives for logical and probabilistic interpretations.

These properties are well-known to the community and have been emphasized in the
literature for at least a decade [4, 5]. A more explicit analysis and evaluation of the
probabilistic interpretation is also in-progress in another paper by the authors (in press).
Quantum-like properties of the graded representation defined in Equation 1 include:

– For discrete graded properties such as character positions in a word, the technique
of quantizing a space of continuous values is similar to that used for modelling
angular momentum in quantum mechanics [13].

– The superposition of bound products leads to an entangled representation, in the
sense that the sum of these products cannot be factorized into the product of two
individual vectors. This is related to the description of such systems as fully dis-
tributed or holographic [9], meaning that each concept and its contributing factors
is represented over several dimensions, and each dimension is used as a feature in
the representation of several different concepts and semantic properties.

– The representation can be quantized, in the sense that it can be used to categorize
concepts using vague predicates such as “Which items are old?” or “Which items
are heavy?”

This said, there is still much to investigate in this area. The quantization of concepts
using vague predicates has yet to be implemented and tested effectively. Also, the re-
lationship between various binding operations and quantum models should be explored
further: for example, in which VSA’s is the operation “binding with a” self-adjoint, and
in which cases is it part of a more general family or operators? Similar questions are
currently being asked in cognitive science [14], and we anticipate that this will remain
an active topic for research and discussion.

The rest of this paper is devoted to example models, which the authors hope will
illustrate the practical usefulness of graded semantic vectors, and encourage deeper
theoretical research with technological use-cases directly in mind.

Table 2. Nearest neighbors in a model built from tabular data, with each distinct value treated as
a random elemental vector.

J. Adams T. Roosevelt
J. Adams 1.00 T. Roosevelt 1.00
Jefferson 0.063 Coolidge 0.072
G.H.W. Bush 0.061 Van Buren 0.067
Washington 0.050 Fillmore 0.059
G.H.W. Bush 0.056 J. Q. Adams 0.046
G. W. Bush 0.048 Taft 0.044

Table 3. Nearest neighbors with values treated as orthographic or graded numeric vectors.

J. Adams T. Roosevelt
J. Adams 1.00 T. Roosevelt 1.00
J. Q. Adams 0.266 Coolidge 0.340
Jackson 0.198 L. B. Johnson 0.314
Washington 0.197 Eisenhower 0.314
Buchanan 0.196 Hoover 0.309
Jefferson 0.196 Wilson 0.307

5 Tabular Data and Continuous Quantities

Tabular datasets are a very common case where rows refer to concepts and columns
refer to attributes or properties of those concepts, and which often contain graded val-
ues. The example presented in this section is a summary of the case-study in [10, §6.5],
which explores different methods for building a semantic vector model to represent a
tabular dataset listing the Presidents of the USA (columns including name, party, state
of birth, religion, years of birth, death, taking and leaving office, and age at these times).

Using random elemental vectors for data values (approximating the standard ap-
proach of treating numbers as unique terms), the combined vectors for the rows tend to
share features only if they have an exactly equal value in at least one column. Exam-
ple results for the queries J. Adams and T. Roosevelt are shown in Table 2. The nearest
neighbors tend to come from exact matches: for example, Adams and Jefferson both
died in the same year (1824), and Roosevelt and Coolidge both died at the same age
(60). There are several erroneous similarities and these are generally poor results.

The indexing method was then improved in two ways. Firstly, orthographic vec-
tors (in the sense of Section 3) were used for the textual columns. Secondly, for the
columns involving time, graded vectors were used. Results using this method are shown
in Table 3. Note that several spurious results have disappeared, and historically closer
presidents are now preferred.

This technique of generating vectors to represent numeric quantities can also be
used to create queries for particular columns. For example, we can now search for items
whose year of taking office or whose year of birth are close to a particular value, by
generating the vector E(column) ⊗ D(year), where D again refers to a demarcator
vector. Note the way the column is important, because it gives both the property to be

Table 4. Nearest neighbors for date-specific searches.

Random Elemental Vectors Numeric Vectors
Took office 1800 Born 1800 Took office 1800 Born 1800

Taylor 0.030 Fillmore 0.17 Jefferson 0.216 Taylor 0.261
Eisenhower 0.022 F. D. Roosevelt 0.040 J. Adams 0.198 Buchanan 0.247
Jefferson 0.019 Taft 0.023 J. Q. Adams 0.190 Hayes 0.243
Carter 0.019 G.H.W. Bush 0.018 Madison 0.185 B. Harrison 0.238
Reagan 0.018 Van Buren 0.016 Monroe 0.182 Harding 0.237

searched for, and the appropriate endpoints. Results for year of birth and year of taking
office near to 1800 are given in Table 4. The method using raw elemental vectors is
more or less random, whereas the use of numeric vectors gives results that are all in the
right periods.

This technique can be extended to sort rows with respect to the magnitude of the
entry in a particular column by measuring the similarity between the vector representa-
tion of each row and E(column)⊗D(α) and/or E(column)⊗D(ω). Figure 2 shows
the correlation between the age at inauguration of each of the presidents in the data
set and scores produced by two methods of estimating their relative ages at inaugura-
tion from their row vector representations directly. For these experiments, binary vector
representations generated using the Binary Spatter Code [15] were used to represent
the data set. In the first method (labeled α), the similarity between the vector product
E(aie column) ⊗D(α) (where aie column is the age at inauguration column header)
and S(president), the row vector representation of each president, was used as an es-
timate of relative age at inauguration, with younger ages receiving higher scores. The
metric of similarity (sim(x, y)) in this case is 1− 2

nHammingDistance(x, y), where n
is the dimensionality of the binary vectors concerned. In the second method (α - ω), the
similarity to the vector product E(column) ⊗D(ω) was also taken into account, such
that the score used to estimate relative age was sim

(
S(president), E(aie column) ⊗

D(α)
)
− sim

(
S(president), E(aie column)⊗D(ω)

)
. As illustrated in Figure 2, both

approaches correlate well with the encoded age at inauguration, with the α−ω method
obtaining Pearson correlations above 0.9 even at relatively low dimensionalities.

6 Inferring Proximity

Binding to graded vectors permits a novel mode of inference — proximity can be
inferred by comparing the results of “release” operations using different elemental
vectors if a common set of demarcator vectors is applied across columns. For exam-
ple, if S(washington) = E(took office) ⊗D(1789) + E(left office) ⊗D(1797) and
S(harding) = E(took office) ⊗D(1921) + E(left office) ⊗D(1923), we should be
able to infer that Harding had a shorter term of office as we would anticipate

sim
(
S(harding)� E(took office), S(harding)� E(left office)

)
>

sim
(
S(washington)� E(took office), S(washington)� E(left office)

)
.

In practice, however, it is necessary to project the results of the “release” operation onto
the two-dimensional plane spanned by the α and ω vectors used to construct the graded

1024 2048 4096 8192 16348 32768
0.88

0.9

0.92

0.94

0.96

0.98

1

DIMENSIONALITY

C
O

R
R

E
L
A

T
IO

N

α−ω

α

Fig. 2. Pearsons’s r correlation at various dimensions between age at inauguration (aie) and:
Label α: Similarity of the president vector to E(aie col)⊗D(α)
Label α − ω: Similarity of the president vector to E(aie col) ⊗ D(α) minus similarity to
E(aie col)⊗D(ω).

vectors of interest 4. Proximity between two vector products
(
e.g. V 1 =S(washington)

� E(took office) and V 2 = S(washington) � E(left office)
)

can then be calculated
by applying distance metrics to their projections on the αω plane:

ed(V 1, V 2) =
√

(〈V 1|α〉 − 〈V 2|α〉)2 + (〈V 1|ω〉 − 〈V 2|ω〉)2

sp(V 1, V 2) = 〈V 1|α〉 × 〈V 2|α〉+ 〈V 1|ω〉 × 〈V 2|ω〉

The first of these metrics, ed(V 1, V 2), estimates the euclidean distance between pro-
jections on the αω plane. The second, sp(V 1, V 2), estimates the scalar product of these
projections, providing a similarity metric. We now present evaluations of these metrics.

6.1 Proximal dates

For ed(V 1, V 2), we evaluate the extent to which this metric can infer the relative age
at which a candidate took office (this information was explicitly encoded for the eval-
uation illustrated in Figure 2) from the encoded demarcator vector representations of
their birth and inauguration years. Binary vector representations of the data set were
again generated using the Binary Spatter Code [15], and the correlation between ac-
tual age at inauguration and age as estimated by ed

(
S(president) � E(birth year),

S(president) � E(inauguration year)
)
. The results of these experiments are shown

in Figure 3, which plots Pearson’s correlation between inferred age and actual age at
different dimensionalities. These results suggest that though strong correlation can be
obtained, the dimensionality required to achieve this is orders of magnitude higher than
that required when searching for explicitly encoded values.

4 With binary vectors this is accomplished by comparing S(president) � E(column header)
to D(α) and D(ω) using 1− 2

n
HammingDistance(x, y). This corresponds to the scalar prod-

uct if binary vectors are viewed as bipolar vectors {1,-1}.

10 11 12 13 14 15 16 17 18 19 20
−0.2

0

0.2

0.4

0.6

0.8

log2(DIMENSIONALITY)

C
O

R
R

E
L
A

T
IO

N

Fig. 3. Inferred correlation between age at inauguration and proximity between projections of
S(president)�D(year birth column) and S(president)�D(year inauguration column)
on the α-ω plane. Y axis = Pearson’s r. X axis = log2(dimensionality in bits).

Table 5. Comparison between proximity-based and conventional search for phrase “chronic
pain”. Score gives the number of standard deviations above the mean score across all documents
in the corpus.

Proximity-based search Conventional search
80.39: Chronic pain [letter] [comment]. 13.53: Pain.
70.32: Management chronic pain. 13.53: Pain control.
69.35: Chronic pain depression. 13.53: No pain, no pain.
65.12: Pain chronic pancreatitis. 13.42: Chronic pelvic pain.
61.61: Chronic pain search. 12.90: Management of chronic pain [letter]

6.2 Proximal terms

Another application for this sort of inference involves identifying documents within
which two terms occur in proximity. This can be accomplished by creating document
vectors as the superposition of bound products between vectors representing terms and
graded vectors representing their positions within the document. If a common α and
ω vector are used throughout, sp(V 1, V 2) can be used to find documents in which the
terms of interest occur in proximity. Table 5 shows the highest-ranked documents in
response to a search for the phrase “chronic pain” in two 1024-dimensional Inverse
Document Frequency weighted binary vector space models of the OHSUMED corpus
of biomedical abstracts [16] (terms occurring more than 100,000 times were excluded
from the indexing process). The first of these models (proximity-based search) estimates
proximity as sp

(
S(document)�E(term1), S(document)�E(term2)

)
. The second

(conventional search) uses a simple Random Indexing approach, in which document
vectors are constructed as weighted superpositions of elemental term vectors.

These results suggest that the proximity-based approach is more likely to retrieve
documents containing the phrase in its entirety. To test this hypothesis, we extracted
all two-word terms (n=176,246) from the Specialist Lexicon [17] provided by the Na-

Table 6. Comparison between proximity-based and conventional search. The mean and median
precision at k=50 are shown, with best results at each level in boldface.

Instances of term in results Proximity-based search Conventional search
≥ 1 (n=24,290) 13.02 4 9.42 4
≥ 10 (n=5,116) 43.44 36 31.18 24
≥ 20 (n=2,519) 62.14 60 44.98 40
≥ 30 (n=1,407) 75.58 80 56.44 56
≥ 40 (n=801) 83.36 92 65.66 70

tional Library of Medicine, and searched for them in the OHSUMED set using both
conventional and proximity-based procedures, retrieving the top 50 nearest neighbor-
ing documents in each case, and evaluating whether or not each of these contained an
exact match (with both terms and documents converted to lowercase) for the two-word
term in question. As one might anticipate, many of the phrases did not occur in the
OHSUMED corpus, so we report results for those phrases that were identified by at
least one of the procedures only (n=24,290). The results are shown in Table 6 which
gives the mean and median precision at k=50 across models, stratified in accordance
with the number of instances of the term retrieved by at least one of the models. Results
are stratified in this way so as to reveal more pronounced differences in performance
for examples in which documents containing the term are relatively frequent, which
is where we would anticipate proximity search having an advantage (as if only a few
documents contain the term, both proximity-based and conventional search would be
expected to retrieve these within the top 50 results).

Interestingly, the applicability of these metrics is task-specific, and each of the met-
rics was abandoned early as an approach to the task for which it was not formally
evaluated. The first metric evaluated, ed(V 1, V 2), is not productive as a means to re-
trieve documents containing terms in proximity, and tends to retrieve documents con-
taining only one of the two words in the term of interest. This may occur because it
will reward instances in which only one word occurs if this word occurs close to the
end of a document, as in this case the projections of the vector representations of both
terms on the α axis of the αω plane will be small, leading to a small euclidean dis-
tance (suggesting close proximity). In contrast the scalar product (sp(V 1, V 2)), which
multiplies the magnitudes of these projections, will be low (suggesting great distance).
As such (sp(V 1, V 2)) rewards the presence of both words and is a better fit for the
“proximal terms” task. However, this metric was not productive in the “proximal dates”
task, where the absence of one of the elements of comparison is not an issue, and the
distances of interest are small in comparison with the range that were represented.

7 Summary and Technology Potential

This paper has demonstrated that graded data can be represented in a distributional
model along with discrete and relational data. This can be done by reusing the VSA
operations and demarcator vector techniques introduced already: no special new math-
ematical operators need to be used. The representation stays holistic throughout: we do

not have to attach any special semantics to particular dimensions. The potential for such
combined semantic models is considerable. For example, inference in the biomedical
domain often involves a combination of information derived from textual sources and
quantitative measurements. As further work, we intend to apply the techniques devel-
oped in this paper to combine the narrative text and structured data (such as lab values)
to generate more comprehensive representations of clinical and biomedical data sets.
Similarly, the orthographic encoding technique can clearly be applied to practical lan-
guage engineering tasks such as spelling correction: this work would involve comparing
and evaluation the orthographic encoding method described here with other established
textual similarity measures for accuracy and computational cost, to establish the relative
strengths of different methods and key integration opportunities.

8 Acknowledgment

This research was supported by NIH/BD2K supplement R01LM011563-02S1.

References

1. T. Cohen and D. Widdows, “Empirical distributional semantics: methods and biomedical
applications,” Journal of biomedical informatics, vol. 42, no. 2, pp. 390–405, 2009.

2. G. Salton and M. McGill, Introduction to modern information retrieval. New York, NY:
McGraw-Hill, 1983.

3. T. Landauer and S. Dumais, “A solution to Plato’s problem: The latent semantic analysis
theory of acquisition,” Psychological Review, vol. 104, no. 2, pp. 211–240, 1997.

4. K. van Rijsbergen, The Geometry of Information Retrieval. Cambridge University Press,
2004.

5. D. Widdows, Geometry and Meaning. CSLI Publications, 2004.
6. D. Widdows and T. Cohen, “Real, complex, and binary semantic vectors,” in Sixth In-

ternational Symposium on Quantum Interaction (J. Busemeyer, F. Dubois, A. Lambert-
Mogiliansky, and M. Melucci, eds.), 2012.

7. R. Lebret and R. Collobert, “Word emdeddings through Hellinger PCA,” arXiv preprint
arXiv:1312.5542, 2013.

8. T. Cohen, D. Widdows, M. Wahle, and R. Schvaneveldt, “Orthogonality and orthography: In-
troducing measured distance into semantic space,” Proceedings of the Seventh International
Conference on Quantum Interaction, Leicester, UK, 2013, 2013.

9. T. A. Plate, Holographic Reduced Representations: Distributed Representation for Cognitive
Structures. CSLI Publications, 2003.

10. D. Widdows and T. Cohen, “Reasoning with vectors: a continuous model for fast robust
inference,” Logic Journal of IGPL, vol. 23, no. 2, pp. 141–173, 2015.

11. R. W. Gayler, “Vector symbolic architectures answer Jackendoff’s challenges for cognitive
neuroscience,” in In Peter Slezak (Ed.), ICCS/ASCS International Conference on Cognitive
Science, (Sydney, Australia. University of New South Wales.), pp. 133–138, 2004.

12. M. A. Kelly, D. Blostein, and D. Mewhort, “Encoding structure in holographic reduced repre-
sentations.,” Canadian Journal of Experimental Psychology/Revue canadienne de psycholo-
gie expérimentale, vol. 67, no. 2, p. 79, 2013.

13. D. Bohm, Quantum Theory. Prentice-Hall, 1951. Republished by Dover, 1989.

14. A. Khrennikov, I. Basieva, E. N. Dzhafarov, and J. R. Busemeyer, “Quantum models for
psychological measurements: An unsolved problem,” PloS one, vol. 9, no. 10, p. e110909,
2014.

15. P. Kanerva, “Binary spatter-coding of ordered k-tuples,” Artificial Neural Networks—ICANN
96, pp. 869–873, 1996.

16. W. Hersh, C. Buckley, T. J. Leone, and D. Hickam, “OHSUMED: an interactive retrieval
evaluation and new large test collection for research,” Proceedings of the 17th ACM SIGIR
conference on research and development in information retrieval, pp. 192–201, 1994.

17. N. C. f. B. Information, U. S. N. L. o. M. . R. Pike, B. MD, and . Usa, “SPECIALIST Lexicon
and Lexical Tools,” Sept. 2009.

