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Abstract. In this paper, we develop an approach to semantic search that utilizes
high-dimensional vector representations to infer the nature of the relationship
between query concepts and other concepts in relevant documents. We do so by
incorporating outside knowledge drawn from tens of millions of concept-relation-
concept triplets, known as semantic predications, extracted from the biomedical
literature using a Natural Language Processing (NLP) system called SemRep. In-
ference is accomplished in high-dimensional space using Expansion-by-Analogy,
a novel analogical approach to pseudo-relevance feedback, in which the relation-
ships between query concepts and other concepts in documents they occur in
guide the query expansion process. The semantic vector based approaches de-
veloped in this work show improvements in performance over a baseline bag-of-
concepts model, and these improvements are most pronounced on queries that are
not conducive to keyword-based search.

Keywords: Distributional Semantics, Information Retrieval, Vector Symbolic Archi-
tectures

1 Introduction

Within the biomedical research community, considerable effort has been invested in the
development of structured knowledge resources [1]. Efforts have been made to leverage
these resources to improve the performance on information retrieval tasks [2–6]. The
emphasis of this work has been on the application of controlled terminologies and the-
sauri as a means to map between variant expressions of the same concept (which has
proven especially useful in the genomics domain), at times with the utilizaton of tax-
onomic (ISA) relationships existing within structured knowledge resources to further
elaborate upon query concepts [6]. The utilization of outside resources in order to elab-
orate upon a stated query is referred to as query expansion. In this paper, we attempt to
leverage a different sort of knowledge resource for query expansion.

Specifically, we utilize SemMedDB [7], a publicly available database of concept-
predicate-concept triplets (such as haloperidol TREATS schizophrenia), or semantic
predications, that have been extracted from the biomedical literature using a Natural
Language Processing system known as SemRep [8]. SemRep extracts predications from
biomedical text using domain knowledge in the Unified Medical Language System [9].



For example, the predication “fluoxetine TREATS Major Depressive Disorder” (MDD)
is extracted from the phrase “patients who have been successfully treated with fluoxe-
tine for major depression.” SemMedDB differs from the human-curated resources that
have been utilized in previous work in several ways. Firstly, it contains a richer set of
semantic relationships than the “ISA” relationships provided by a taxonomy. SemRep
extracts a total of 31 predicate types, of which many relate to clinical medicine (e.g.
TREATS, DIAGNOSES) and interactions between substances and biological entities
(e.g. INHIBITS, STIMULATES). Therefore an inference mechanism of some sort is
required in order to determine which of these possible pathways for query expansion is
relevant for a particular concept. Secondly, it cannot be assumed to be perfectly accu-
rate, on account of the difficulties inherent in the automated processing of biomedical
language. In a recent evaluation of SemRep, Kilicoglu et al. report .75 precision and
.64 recall (.69 f-score) [10]. Finally, it consists of a large number of assertions (more
than 50 million) in predication form, and these assertions are not unique - they carry
distributional information describing the number of times each predication has been
extracted from the corpus of biomedical literature to which SemRep has been applied.

To model this extracted knowledge we use a method called Predication-based Se-
mantic Indexing (PSI) [11], leveraging vector-based approaches to reasoning we have
developed during the course of research documented in our prior Quantum Interac-
tion contributions [12–14]. PSI is well suited to modeling the information contained
in SemMedDB as it captures both distributional information, in the manner of conven-
tional distributional semantic models (for recent reviews see [15] and [16]), and logical
relations between concepts. Therefore, it allows for weighting of the relationships be-
tween concepts in accordance with their relative frequency. As PSI is based on the
Random Indexing paradigm [17], it provides a computationally convenient way to gen-
erate a reduced-dimensional approximation of the information in SemMedDB, which
can then be retained in RAM for efficient inference. In this paper, we describe a new
approach to query expansion we term Expansion-by-Analogy, in which we infer the
significant relationships between query concepts and other concepts in documents they
occur in. These inferences are drawn from PSI concept vectors, and the document vec-
tors derived from them, without the need to identify co-occurring concepts explicitly.

2 Expansion-by-Analogy

In previous research, we have developed methods to draw inference from SemMedDB
in order to recover held-out therapeutic relationships using a process of analogical
reasoning [12, 13, 18, 14]. This process occurs in a high-dimensional space in which
concepts are represented as vectors that encode the nature and distribution of the re-
lationships they occur in. Sets of predicates that link one concept to another can be
inferred from their vector representations by reversing the vector transformations used
during encoding. Once inferred, vector representations of these predicate pathways can
be used to find concepts that relate to some other concept in a similar way. As distribu-
tional models can derive document representations from concept vector representations,
it seems reasonable that one might infer the predicates that connect a query concept
to related concepts in a document from a document vector in a similar manner. Fig-
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Fig. 1. Inferring predicates from related documents. The solid line indicates direct co-occurrence.
The dashed lines indicate inferred predicate paths, which are used to expand the term “prozac”
so as to retrieve related documents that do not contain it directly.

ure 1 illustrates this process schematically. Documents containing the query concept
“prozac” are retrieved, and the types of relationships (or predicates) between prozac
and other concepts in these documents are inferred. It is not necessary to decompose
the vector representations of the concepts or the documents to draw these inferences:
the connecting predicates are inferred from these representations directly. Vector repre-
sentations of these predicates can then be used to generate an expanded query vector,
which will be similar to vectors representing documents containing concepts that re-
late to prozac in accordance with the inferred predicates. We refer to this process as
Expansion-by-Analogy as it involves applying a relational structure inferred from one
set of documents to retrieve others. Such alignment of relational structure is a defining
characteristic of analogical reasoning [19]. In the section that follows we will describe
the methods through which the vectors and inferences concerned are generated.

3 Mathematical Structure and Methods

3.1 Circular Holographic Reduced Representations

To accomplish the encoding of predicate types within a vector space representation of
concepts, we draw upon the capabilities of a family of representational approaches col-
lectively known as Vector Symbolic Architectures (VSAs) [20]. In our experiments the
VSA we will employ is Plate’s Circular Holographic Reduced Representation (CHRR)
[21], which uses complex vectors each of whose coordinates is a number on the unit
circle in the complex plane, generated using the implementation developed in [22]. We
will refer to such a complex vector as a circular vector. The use of complex vectors is
standard in physics, particularly quantum theory, but remains comparatively unexplored
in artificial intelligence and machine learning [23]. However, the approach we have de-
veloped is readily applicable to other VSAs, such as the Binary Spatter Code (BSC)
[24]. Though the BSC offers more storage capacity on a bit-for-bit basis [25], this is not



required for the modestly sized document collection we employ here. Furthermore, the
simplicity of the circular binding operation (which unlike real-valued HRR, involves
simple addition of phase angles) and superposition (which unlike the BSC, requires no
random tie-breaking) make the complex vectors more agile for experimentation.

VSAs share with other distributed vector representations the ability to generate
composite vector representations of terms or concepts, which we will refer to as se-
mantic vectors, by superposing randomly generated elemental vectors. For example,
the semantic vector representation of a term might be composed from the elemental
vectors of terms that surround it. In this way, two terms surrounded by similar other
terms will obtain similar vector representations, providing a convenient way to estimate
semantic relatedness [26]. In addition to the standard superposition operator (+), VSAs
introduce a compositional operator known as binding, which we will represent with
the symbol ⊗. Binding is a multiplication-like operator through which two vectors are
combined to form a third vector C that is dissimilar from either of its component vectors
A and B. Binding has an inverse, which we will represent with the symbol �. If C =
A ⊗ B, then A � C = A � (A ⊗ B) ≈ B. This recovery may be approximate, but the
robust nature of the representation guarantees that A � C is similar enough to B that B
can be recognized as the best candidate for A � C in the original set of concepts. Thus
the invertible nature of this operator facilitates retrieval of the information it encodes.

In CHRR, binding through circular convolution is accomplished by pairwise mul-
tiplication: X ⊗ Y = {X1Y1, X2Y2, .....Xn−1Yn−1, XnYn}, which is equivalent to
addition of the phase angles of the circular vectors concerned. Binding is inverted by
binding to the inverse of the vector concerned:X�Y = X⊗Y −1, where the inverse of
a vector is its complex conjugate. Elemental vectors are initialized by randomly assign-
ing a phase angle to each dimension (dimensionality is user-defined). Superposition
is accomplished by pairwise addition of the unit circle vectors, and normalization of
the result for each circular component. In the implementation used in our experiments,
normalization occurs after training concludes, so the sequence in which superposition
occurs is not relevant. Also, the “random” initiation of elemental vectors is rendered
deterministic by seeding the random number generator with a hash value derived from
a string or character of interest following the approach developed in [25], ensuring that
incidental overlap between elemental vectors is consistent across experiments.

3.2 Predication-based Semantic Indexing (PSI)

PSI derives vector representations of concepts by superposing obound products rep-
resenting concept-predicate pairs. Elemental vectors are generated for each concept
E(concept), and each relation type E(PREDICATE) and its inverse E(PREDICATE-IN).
Semantic vectors are learned gradually by superposing the bound products of elemental
vectors representing related items: thus, to encode a predication xRy, the semantic vec-
tor for x, written S(x), is incremented by the bound product E(R) ⊗ E(y). The same
process is applied in reverse to S(y). For example, encoding a single instance of the
predication “prozac ISA fluoxetine” is accomplished as follows:

S(prozac) += E(ISA)⊗ E(fluoxetine)

S(fluoxetine) += E(ISA-INV)⊗ E(prozac)



Thus, the semantic vector for prozac encodes the assertion that it is (a trade name for)
fluoxetine, and the semantic vector for fluoxetine encodes the assertion that it has the
hyponym prozac. As the same predication may be extracted from many documents, it is
advantageous to apply weighting metrics to temper the effect of repeated predications,
and increase the influence of infrequently occurring concepts. In our experiments we
applied local (LW) and global weighting (GW) metrics as follows:

S(concept1) += E(PREDICATE)⊗ E(concept2)× LW ×GW

LW = log(1 + total occurrences of predication)

GW = IDF (concept2)

IDF (concept2) = log
number of documents

documents containing concept2

The net result is a set of concept vectors derived from the set of predications each
concept occurs in. On account of the reversible nature of the binding operator, this
information can be retrieved. So one would anticipate:

S(fluoxetine)� E(ISA-INV) ≈ E(prozac)

S(fluoxetine)� E(prozac) ≈ E(ISA-INV)

This process results in three sets of vector representations, collectively containing a
semantic and elemental vector for each concept, as well as an elemental predicate vector
for each predicate and its inverse.

3.3 Document vector construction

Document vectors are constructed by superposition of the PSI semantic vectors repre-
senting concepts (C1 to Cn) extracted from this document, as follows:

S(document D) =

n∑
i=1

S(Ci)× TF (Ci)× IDF (Ci)

TF (C) = frequency concept C in document D

IDF (C) = log number of documents
documents containing C

3.4 Pseudo-relevance Feedback

Pseudo-relevance feedback is an automated technique based on the assumption that the
nearest neighboring documents retrieved using standard methods are relevant, and that
their contents can therefore be used to expand the original query. In our experiments
we implement a form of pseudo-relevance feedback as follows. For each concept that
was extracted from a query, we retrieve ten related documents by finding the ten nearest
neighboring semantic document vectors to the semantic vector for this concept. These
semantic document vectors representations are then superposed, and the predicates that
connect them to the concept in question are inferred by finding the nearest neigh-
boring predicate vectors to the composite query S(superposed document vectors) �



Table 1. Nearest Neighboring Predicate Vectors to S(prozacNN) � E(prozac)

score predicate STD above mean
0.072 ISA-INV 3.83
0.043 LOCATION OF-INV 2.24
0.040 PREVENTS-INV 2.11
0.039 NEG STIMULATES 2.06
0.038 SAME AS 1.99

E(concept), as illustrated schematically earlier in Figure 1. Consider for example the
concept “prozac”, which was extracted from the query “relationship between prozac
and liver disease”. First we find the ten-nearest neighboring semantic document vectors
to the semantic vector for the concept “prozac”. Then we superpose those vectors to
generate the vector S(prozacNN), and retrieve the nearest neighboring predicate vec-
tors to the bound product S(prozacNN) � E(prozac), which are shown in Table 1.

Predicates with a similarity to S(prozacNN)�E(prozac) of more than 2.5 standard
deviations above the mean across all predicates are retained. In our case, this applies
to ISA-INV. For the concept “liver disease” (LD) only COEXISTS WITH met this
threshold, and no predicate met the threshold for concept “relationships”. So the query
vector for “relationship between prozac and liver disease” is constructed as follows:

QV (prozacISA-INV) = S(prozac) + E(ISA-INV)⊗ E(prozac)

QV (LDCOEXISTS WITH) = S(LD) + E(COEXISTS WITH)⊗ E(liver disease)

QV (entire query) = QV (prozac)× IDF (prozac) +QV (LD)× IDF (LD)

+S(relationships)× IDF (relationships)

Documents are then ranked in order of the relatedness between their vector representa-
tions and this composite query.

4 Evaluation

4.1 Methods and Materials

We evaluate Expansion-by-Analogy (EbA) using OHSUMED, a widely-used informa-
tion retrieval evaluation set [27]. OHSUMED consists of 348,566 clinically-oriented
abstracts and titles extracted from 270 medical journals over a five year period, and 106
clinically-oriented queries, with background information. For each query, a set of doc-
uments have been annotated as probably relevant, definitely relevant or irrelevant. This
annotation is not exhaustive, but does include all relevant articles discovered by a set of
human annotators and a baseline information retrieval system. For the purpose of our
evaluation, we consider any document annotated as probably or definitely relevant to a
query to be relevant. Background information was not utilized - we restricted our eval-
uation to the query text only. Two queries were excluded from the evaluation - query
8 as no documents are annotated as possibly relevant, and query 68 as this maps to a



single concept, “mesenteric vasculitis”, which was not extracted from any document in
the OHSUMED corpus resulting in an empty query vector in concept-based models.
Both the queries and documents were processed by SemRep. Rather than attempting
to extract predications from these documents, SemRep was configured to extract and
normalize concepts recognized in the text. This step would usually precede the extrac-
tion of predications, and is accomplished within SemRep by the widely-used MetaMap
concept extraction and normalization system [28]. Concepts occurring in more than
100,000 documents were excluded. The concepts extracted from queries and documents
are then used in place of the original terms following [29, 30], an approach that has
been referred to as “bag-of-concepts” (BoC). Our PSI space was derived from the June
2013 release of SemMedDB [7], which contains 65,465,536 predications extracted from
13,537,476 MEDLINE citations. From this, we created a 2000-dimensional complex-
valued PSI space using the open source Semantic Vectors package [31, 23]. Concepts
occurring in more than 500,000 predications were excluded, in order to eliminate unin-
formative frequently-occurring concepts. The purpose of our evalution was to determine
whether query expansion improved the performance of the BoC approach, and the ex-
tent to which both of these approaches were able to address queries that are difficult to
address using a conventional keyword-based, or “bag-of-words” (BoW), approach. To
do so, we evaluate the performance of six models, summarized in Table 2.

All models use Term-frequency Inverse Document Frequency (TF-IDF) weight-
ing for the generation of both query and document vector representations, and terms
occurring in more than 100,000 documents were excluded from term-based models.
In addition to representing the full document-by-term matrix (BoCL), we generate a
reduced-dimensional approximation of this space by deriving document vectors from
the elemental vector representations of concepts they contain (BoCE). We do so in or-
der to evaluate the extent to which information loss on account of dimension reduction
affects performance. We also generate document vectors using the PSI semantic vectors
for concepts (BoCS), so we can distinguish between improvements in performance on
account of the enriched nature of these vector representations, and improvements due to
inference by analogy. Finally, we evaluate the performance of two bag-of-words based
models, one using the full document-by-term matrix (BoWL), and the other using a
reduced-dimensional approximation of this space derived from elemental term vector
representations, also in an effort to evaluate the effects of information loss during di-
mension reduction. For each of these models we report the Mean Average Precision
(MAP) and the precision at k=10 and 100 (Pk=10|100), estimated using trec eval [33].

Table 2. Evaluated models

BoCL Bag-of-concepts implemented using Apache Lucene [32]
BoCE Vector space implementation of bag-of-concepts, using E(concept)
BoCS Semantically enriched bag-of-concepts, using S(concept)
EbA Expansion-by-Analogy
BoWL Bag-of-terms implemented using Apache Lucene
BoWE Vector space implementation of bag-of-terms, using E(term)



Table 3. Cumulative results. Best in class (BoC vs. BoW) and overall are shown in boldface.

BoCL BoCE BoCS EbA BoWL BoWE µSIM
MAP 0.1212 0.1261 0.1530 0.1574 0.1748 0.1456 0.1996
Pk=10 0.2615 0.2394 0.2587 0.2529 0.3212 0.2394 0.3250
Pk=100 0.1019 0.1158 0.1347 0.1388 0.1397 0.1232 0.1589

4.2 Results and Discussion

It is apparent upon review of the results in Table 3 that unlike the case with other test
sets such as the TREC Medical Records collection (see for example [34]), concept
extraction has a detrimental effect on overall performance, as compared with BoW ap-
proaches. Nonetheless, the baseline performance of BoC is improved considerably by
the application of semantic vector based approaches for all metrics shown other than
Pk = 10. For example, there is a 26% and 30% improvement in MAP over BoCL for
BoCS and EbA respectively. These improvements are still not adequate to improve per-
formance beyond a term-based baseline (BoWL), unless the document-by-term matrix
is subjected to the same representational constraints as the reduced-dimensional vec-
tor representations (BoWE). In addition to the results for individual models, we report
those obtained by combining the best-performing models in each category (concept-
based: EbA, keyword-based: BoWL) by assigning the mean of the scores from these
models to each query document pair (µSIM). These results exceed those obtained by
any individual model, as the performance gains of semantic vector based approaches
often occur on queries where keyword-based approaches perform poorly.
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Figure 2 shows the average precision for each query, with queries ordered in accor-
dance with the performance of BoWL, represented by the grey shaded area of the graph.
When BoCL (—•), BoCS (- -+) or EbA (· · · ∗) perform better than the baseline, their
respective demarcator appears above the shaded area. It is evident from this figure that
in many cases the semantic vector approaches lead to considerable improvements on
queries in which the average precision of the term-based baseline was relatively poor
(≤ 0.2). In many of these cases, concept extraction alone (—•) had less effect than
retrieval based on PSI semantic vector representations (- -+), with further improve-
ments obtained when using EbA to accomplish inference (· · · ∗) on a number of queries.
These queries provide insight into where EbA offers advantages over conventional ap-
proaches. Table 4 shows those queries in which the AP of EbA was at least double that
of BoWL. Two characteristics of these queries stand out, though these are not universal.
Firstly, many of the queries concern rare clinical entities. However, we were not able
to identify a consistent pattern relating the document frequency of query concepts to
EbA performance. Secondly, the degree to which many of these queries were expanded
(P↑) is often greater than the average across all queries (µ=5.2, σ=3.4) suggesting that
identification of further pathways for expansion may be advantageous.

Figure 3 shows all predicates that were used more than five times to expand queries
in the set, with counts of the number of times they were employed. These counts are
aggregated with respect to direction (such that counts of ISA and ISA-INV are aggre-
gated) and include negated forms of the predicates (e.g. NEG TREATS), which made
up approximately 13% of the 384 expansions that occurred. It is apparent from this
figure that EbA uses a much broader range of semantic relations than the ISA relation-
ships that predominate in taxonomy-based query expansion. In fact “ISA” expansions
made up a small proportion (< 2 %) of the total number only, and were not utilized for
expansion of any of the queries in Table 4. This may be an artifact of our method. EbA
is likely to infer paths for expansion from documents that contain an exact match for
the query concept concerned. So inferring an ISA pathway would require that both this
concept and its taxonomic relative appear in the same document, which may not always
be the case. Nonetheless, it is clear that EbA makes extensive use of a wide range of the
predicate types represented in SemMedDB.

Table 4. Queries with EbA > 100% improvement in AP over BoWL and AP > MAP(BoW).
P↑ = no. predicates added. %↑ = % improvement.

Query P↑ %↑
“review article on cholesterol emboli” 1 315
“spontaneous unilateral galactorrhea differential diagnosis and workup” 5 1386
“keratoconus treatment options” 3 260
“indications for and success of pericardial windows and pericardectomies” 15 1081
“diverticulitis differential diagnosis and management” 10 383
“surgery vs percutaneous drainage for lung abscess” 12 141
“infiltrative small bowel processes information about small bowel lymphoma
and heavy alpha chain disease”

10 793
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Fig. 3. Frequently-utilized predicates. The X axis shows the number of times this predicate was
utilized for expansion across all queries.

Though these results do suggest that EbA may be complementary to BoW and BoC
approaches, our evaluation has limitations - we have evaluated our method on a sin-
gle test set only, and have made no attempt to optimize parameters such as statistical
weighting metrics, dimensionality or underlying VSA. Nonetheless, the current evalua-
tion suggests several directions for future research. These include combining EbA with
term-based approaches, and extending the length of inferred predicate pathways which
has improved performance in other applications [35]. Inferring directions for expansion
from a subset of the relevant results may also lead to more pertinent predicates than
those identified through the pseudo-relevance based approach we have developed here.

5 Conclusion

This paper describes EbA, an approach to query expansion that utilizes as a knowl-
edge source a reduced-dimensional vector space approximation of tens of millions of
semantic predications extracted from the biomedical literature. In addition to document
vector representations, expanded vector representations of query concepts are derived
from the vectors in this space using a vector-symbolic model of analogical reason-
ing, and used to construct query vectors. Evaluation on a standard information retrieval
test set shows improvements over the aggregate performance of bag-of-concepts vector
space approaches, and that the method performs well on a number of queries that are
not conducive to standard keyword-based approaches. To do so, EbA utilizes a broader
range of semantic relations than is possible with taxonomy-based approaches.
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