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Abstract. Predication-based Semantic Indexing (PSI) is an approach to generat-
ing high-dimensional vector representations of concept-relation-concept triplets.
In this paper, we develop a variant of PSI that accommodates estimation of the
probability of encountering a particular predication (such as fluoxetine TREATS
major depressive disorder) in a collection of predications concerning a con-
cept of interest (such as major depressive disorder). PSI leverages reversible
vector transformations provided by representational approaches known as Vector
Symbolic Architectures (VSA). To embed probabilities we develop a novel VSA
variant, Hermitian Holographic Reduced Representations, with improvements in
predictive modeling experiments. The probabilistic interpretation this facilitates
reveals previously unrecognized connections between PSI and quantum theory
- perhaps most notably that PSI’s estimation of relatedness across multiple rea-
soning pathways corresponds to the estimation of the probability of traversing
indistinguishable pathways in accordance with the rules of quantum probability.

Keywords: Distributional Semantics, Vector Symbolic Architectures, Holographic Re-
duced Representations, Quantum Interactions

1 Introduction

The increasing availability of electronic text presents opportunities for automated ac-
quisition of computer-interpretable knowledge. Two fundamental issues related to the
application of such automatically extracted knowledge are how best to represent and
reason with it. It differs from knowledge in manually curated resources in several re-
spects, the most obvious being in scale, indicating a need for reduced-dimensional rep-
resentations and scalable inference methods. In addition, it contains distributional infor-
mation, as the same assertion may be extracted from multiple contexts, and is unlikely
to be perfectly accurate. This suggests a need for a continuous-valued alternative to the
discrete estimates of truth or falsehood provided by symbolic logical inference. Pre-
viously, we have addressed these issues using a geometric approach to representation
known as Predication-based Semantic Indexing (PSI) [1] that mediates a scalable form
of approximate inference [2]. However, the association strengths estimated by PSI can-
not be interpreted probabilistically, which is desirable from a theoretical perspective,



as well as for practical purposes such as their integration with probabilities from other
sources. Consequently in this paper, we develop a probabilistic interpretation of PSI
and the operators that it mediates, revealing a deeper relationship to the probabilistic
calculus of quantum mechanics than had been elucidated previously.

2 Background

2.1 Distributional Semantics and Predication-based Semantic Indexing

Methods of distributional semantics learn the relatedness between terms from their dis-
tribution across large electronic text collections [3]. A commonly used methodological
approach involves generating vector space models of corpora in which terms are rep-
resented as vectors derived from the contexts in which they occur, such that terms oc-
curring in similar contexts will have similar representations. Such models have shown
remarkable successes in simulating human behavior on certain cognitive tasks (see for
example [4]). However, they do not encode the nature of the relationship between terms,
and therefore are limited in their utility as a means to model analogical reasoning, or
support logical operations. Predication-based Semantic Indexing (PSI) [1] was devel-
oped to model sets of concept-relation-concept triplets, known as semantic predica-
tions, extracted from the biomedical literature by a natural language processing system
known as SemRep [5]. PSI concept vectors encode both the nature and the distribution
of the predications in which a concept occurs. Consequently, a PSI space can provide
answers to questions such as “what TREATS schizophrenia?”. Later iterations of PSI
used reversible vector transformations to mediate analogical inference, used for predic-
tive modeling in drug repurposing and other applications (for a review, see [2]).

2.2 Quantum-inspired Operations and Interpretations

Several authors have provided interpretations of vector space models of distributional
semantics that relate to quantum theory. Widdows and Peters develop distributional
models of negation and disjunction, using the connectives of quantum logic [6]. Aerts
and Czachor draw parallels between the application of the Singular Value Decomposi-
tion in Latent Semantic Analysis [4] and spectral decomposition in quantum physics,
and show how the relatedness between terms within a set of sentences can be repre-
sented as a density matrix [7]. Bruza and his colleagues draw an analogy between word
vectors in distributional models and state vectors in quantum mechanics, from which
it follows that context-specific associations of a term might be revealed by a process
analogous to collapse of a state vector upon measurement [8].

Regarding PSI, the utility of quantum-logical operators has been clearly demon-
strated across several experiments, and aspects of the model have been interpreted with
respect to their relationship to quantum mechanics. Vector space equivalents of dis-
junction and negation, described as quantum logic by Birkhoff and von Neumann [9],
and applied previously in information retrieval experiments [6], have been applied to
PSI spaces to direct search toward concepts of interest [10], and evaluate the related-
ness between concepts across multiple predicate paths with improved performance in



predictive modeling experiments [11]. In analogical retrieval experiments, performance
was improved with compound cue vectors generated by superposing cue vectors de-
rived from several pairs of cue concepts [12]. This phenomenon was interpreted with
respect to its relationship to entanglement. Implicit in this interpretation is the notion
that the semantic concept vectors generated by PSI are analogous to the state vectors
used in quantum mechanics to estimate the probabilities of different outcomes. In ad-
dition, we have developed a complex vector based implementation of PSI [11], which
bears some relation to quantum mechanics also. However, PSI was not conceived with
quantum mechanics in mind, and to date our adoption of quantum-related mathematics
has been primarily pragmatically motivated, and arguably somewhat ad-hoc.

In this paper we aim to provide a more extensive account of the relationships be-
tween PSI and quantum mechanics. To do so, we develop a probabilistic interpretation
of PSI, through which the semantic distance metrics derived by the method can be in-
terpreted with respect to the probabilities of encountering particular predications in the
collection from which the space was derived. In the vector space model for information
retrieval, the cosine similarity q · d between a query q and a document d can naturally
be interpreted as the probability that d is relevant to q, and the correspondence between
this interpretation and Born’s rule in quantum mechanics has been recognized for some
years [13]. This paper takes this parallel further with the key mathematical observation
that when searching over multiple relationships at once in a vector representation, the
superposition operation used naturally in vector spaces gives rise to a probabilistic in-
terpretation based on squared amplitudes, and so the way probabilities are combined
follows the rules of quantum rather than classical probability.

The remainder of the paper proceeds as follows. First, we describe the complex vec-
tor based implementation of PSI, and the modifications required to facilitate a proba-
bilistic interpretation. We then provide probabilistic interpretations of PSI-based meth-
ods of retrieval and inference, present an evaluation of our modified implementation,
and conclude with a discussion of the implications of this work.

3 Mathematical Structure and Methods

3.1 Circular Holographic Reduced Representations (CHRR)

PSI derives vector representations of concepts by superposing vector products repre-
senting concept-predicate pairs, such as “ISA fluoxetine”. These vector products are
composed using reversible vector transformations provided by a family of represen-
tational approaches known as Vector Symbolic Architectures or VSAs [14], and are
commonly referred to as “binding”, represented with the symbol ⊗, and the inverse of
binding (or “release”) represented with the symbol �. A range of VSAs with suitable
binding and superposition operations can be implemented over various number fields
including the real numbers R, complex numbers C, and binary numbers Z2. As we
have argued previously, the use of complex vectors is standard in quantum theory, but
comparatively unexplored in information retrieval and distributional semantics [15].

The longest-established VSA using complex numbers is Plate’s Circular Holographic
Reduced Representation (CHRR) [16, 17]. CHRR uses complex vectors each of whose



coordinates is a number on the unit circle U(1) in the complex plane, thus the space
of available vectors in n dimensions is U(1)n ⊂ Cn. We will refer to such a complex
vector as a circular vector. For our present purposes, this architecture provides both a
binding operator with an exact inverse such that A⊗B�A = B (which is not the case
for Holographic Reduced Representations in general), and a continuous-valued vector
space representation conducive to a probabilistic interpretation (this is more difficult
with the Binary Spatter Code (BSC) [18], another influential VSA).

Binding (⊗) in CHRR is accomplished by pairwise multiplication, the natural group
operation on U(1)n, so that X ⊗ Y = {X1Y1, X2Y2, .....Xn−1Yn−1, XnYn}. This is
equivalent to addition of the phase angles of the unit length circular vectors concerned.
Release (�) is accomplished by binding to the inverse of a circular vector, where the
inverse of a vector is its complex conjugate. PSI also requires a superposition operator
(+). In CHRR this is accomplished by pairwise addition of unit circle vectors, with
subsequent normalization of each circular component back to unit length. In practice,
for pairwise addition, this is just the average of the phase angles, which as a group
addition operation suffers from the obvious objection that it is not associative, so that the
elements added later have more significance than those added earlier. In some cases, this
preference for more recent items may be desirable, for example, in modelling short-term
memory [19]. Where it is not desirable, its effects can be mitigated by storing several
vectors and superposing them in a batch: for example, in the case of PSI, normalization
occurs after training concludes, so the sequence in which superposition occurs is not
relevant. The benefits of CHRR in this form are partly computational: only one number
needs to be stored for each complex dimension, binding and superposition are fast and
simple operations, and sparse representations can be supported without undue difficulty
[17, 15]. However, the restriction from Cn to U(1)n has been found unsuitable for a
fuller probabilistic interpretation, and as described later in the paper, we have extended
the CHRR model by relaxing the requirement that coordinates lie on the unit circle.

3.2 Predication-based Semantic Indexing (PSI))

PSI is based upon the random indexing paradigm [20], in which basic elemental vectors
representing terms, concepts or documents are superposed to generate semantic vector
representations. In high dimensions, randomly-chosen vectors make suitable elemen-
tal vectors thanks to their high probability of being mutually almost orthogonal. With
CHRR, elemental vectors are initialized by randomly assigning a phase angle to each of
a user-defined number of dimensions which determine the dimensionality of the result-
ing PSI space. Elemental vectors are generated for each concept E(concept), and each
relation type E(PREDICATE) and its inverse E(PREDICATE-INV). Semantic vectors are
learned gradually by superposing the bound products of elemental vectors representing
predicate-argument pairs. For example, encoding a single instance of the predication
“prozac ISA fluoxetine” is accomplished as follows:

S(prozac) += E(ISA)⊗ E(fluoxetine)

S(fluoxetine) += E(ISA-INV)⊗ E(prozac)

Thus, the semantic vector for prozac encodes the assertion that it is (the brand name of)
fluoxetine, and the semantic vector for fluoxetine encodes the assertion that it has the



hyponym prozac. As the same predication may be extracted from many documents, the
generated vectors encode distributional information. So statistical weighting metrics are
often applied such that the extent to which a predication contributes to a semantic vector
is some function of its frequency and the global frequency of the other concept and/or
predicate concerned. After training is complete, the net result is a set of semantic con-
cept vectors derived from the predications each concept occurs in. Elemental predicate
vectors for each concept and predicate (and its inverse) are also retained.

4 Embedding Probabilities in Predication Space

This section describes how the CHRR model using vectors in U(1)n was extended to
use more general vectors in Cn. This supports the probabilistic operations we depend
on, and also makes the architecture much more similar to the Hilbert space models used
standardly in quantum mechanics.

Scaling: In accordance with Plate’s original description of CHRR [16], in previous
work we have normalized semantic vectors at the component level after training. This
ensures that the vectors produced during training consist of numbers on the unit circle
in the complex plane. To accommodate a probabilistic interpretation, we instead apply
normalization to the vector as a whole, such that ‖S(C)‖ = 1 after training. A conse-
quence of this modification is that the components of our vectors do not necessarily fall
on the unit circle of the complex plane.

Binding: Binding and release are still conducted by adding the phase angles of
the components concerned (as though they were unit circle vectors). However, with
semantic vectors the radii of the circular components are likely to differ on account
of the training process, and are retained. During binding and release, the magnitudes of
corresponding circular components are multiplied. As elemental vectors are constructed
with unit length circular components, this particularly affects operations involving pairs
of semantic vectors, or their superpositions.

Vector Comparison: In Plate’s original model, and in our previous work, com-
parison between vectors is conducted at the component level, such that for two k-
dimensional vectors V1 and V2, sim(V1, V2) = 1

k

∑k
i cos(Vi

1,V
i
2), the mean pairwise

cosine distance between components. For our current purposes, we instead employ the
hermitian inner product between normalized circular vectors.

Weighting: Instead of the heuristically-motivated approaches we have utilized pre-
viously, such as predication-level TF-IDF weighting, the square root of the number
of times a predication occurs is used as a weighting metric. As we will subsequently
illustrate, this step is a prerequisite to the recovery of the probabilities of events of in-
terest using quantum mechanical operators. The training operations for a predication
C1 PRED C2 with pf instances in the knowledge base then becomes:

S(C1) += E(PRED)⊗ E(C2)×
√
pf

S(C2) += E(PRED-INV)⊗ E(C1)×
√
pf

For the remainder of the paper we will refer to CHRR with these modifications as
Hermitian Holographic Reduced Representations (HHRR), and refer to HHRR-based
PSI with the modified weighting metric we have described as probabilistic PSI (pPSI).



Table 1. “mdd” = Major Depressive Disorder. “ssri” = Selective Serotonin Reuptake Inhibitor.

predication frequency predication frequency
ssri TREATS mdd 64 prozac ISA ssri 16
fluoxetine TREATS mdd 36 prozac ISA antidepressive agents 4
prozac ISA fluoxetine 25 prozac TREATS anxiety disorders 4

Table 2. Non-zero entries of mdd vector in unreduced concept-concept-predicate matrix.

TREATS-INV ssri TREATS-INV fluoxetine

mdd
√

64
100

= 0.8
√

36
100

= 0.6

4.1 Estimating probabilities

A pPSI space can be considered as a reduced-dimensional approximation of a weighted
and normalized term-by-term-by-predicate matrix, which we will refer to directly for
illustrative purposes. Consider the small collection of predications in Table 1. In the
case of this collection and S(mdd), the non-zero values of the matrix that is being
approximated after normalization of the semantic vectors are shown in Table 2. The
probability of drawing the predication “ssri TREATS mdd” from the pool of predica-
tions concerning “mdd” is then equal to the squared length of the projection of S(mdd)
on the “TREATS-INV ssri” axis. In symbols, the correspondence between this prob-
ability, |S〉 = S(mdd), and the basis vectors |X〉 representing TREATS-INV ssri and
|Y 〉 representing TREATS-INV fluoxetine can be expressed as follows:

|S〉 = (
√

64
100 ). |X〉+ (

√
36
100 ). |Y 〉

P (ssri TREATS mdd) = ‖ |X〉〈X|S〉 ‖2 = 64
100

To derive a pPSI space from the collection of predications in Table 1, S(mdd) is gener-
ated by superposing the bound products of high-dimensional elemental circular vectors
representing TREATS-INV ssri and TREATS-INV fluoxetine. Unlike |X〉 and |Y 〉,
these bound products may only be approximately orthogonal to one another. Nonethe-
less, the dimensionality of the space concerned ensures that random elemental vectors,
and hence their bound products, are mutually orthogonal or close-to-orthogonal with
high probability [2]. So, for example, over 1,000 simulations with different random ini-
tializations of a 1,000-dimensional pPSI space the squared length of the projection of
S(mdd) onto the vector product E(TREATS-INV)⊗E(ssri) approximates 64

100 , as il-
lustrated in Table 3. This is, of course, the probability of drawing “ssri TREATS mdd”
from the collection of 100 mdd-related predications in Table 1.

4.2 Disjunction and Negation

Similarly, the probability of drawing one of a specified set of predications can be de-
termined by the squared length of the projection of a semantic (cf. state) vector onto



the subspace spanned by the vectors representing the component predicate-argument
pairs of interest. If |S〉 represents S(prozac) and the basis vectors |W 〉, |X〉 , |Y 〉 and
|Z〉 represent predicate-argument pairs ISA fluoxetine; ISA ssri; ISA antidepressive
agents and TREATS anxiety disorders respectively, then:

|S〉 = (0.7143). |W 〉+ (0.5714). |X〉+ (0.2857). |Y 〉+ (0.2857). |Z〉

The probability of drawing either ISA fluoxetine or ISA ssri is the square of the length
of the projection of |S〉 onto the subspace spanned by |W 〉 and |X〉. This projection can
be expressed as (|W 〉 〈W |+|X〉 〈X|) |S〉 = |W 〉〈W |S〉+|X〉〈X|S〉 = (0.7143). |W 〉+
(0.5714). |X〉, with a squared length of 0.71432 + 0.57142 = 0.8367 = (25+16)

49 , the
probability of drawing either “prozac ISA fluoxetine” OR “prozac ISA ssri” from
the collection of 49 prozac-related predications in Table 1. This probability can also be
estimated from a pPSI space derived from the predications in Table 1 as the squared
length of the projection of S(prozac) onto an orthonormal subspace constructed by
applying the Gram-Schmidt procedure to bound products E(ISA)⊗E(fluoxetine) and
E(ISA)⊗E(prozac). Over 1,000 simulations with different random initializations the
mean squared length of this projection was 0.8370 ± 0.0048.

It follows that the probability of drawing something other than ISA fluoxetine or
ISA ssri is the squared length of the vector |S〉 − (|W 〉 〈W | + |X〉 〈X|) |S〉, the pro-
jection of |S〉 onto a subspace orthogonal to that spanned by |W 〉 and |X〉. The squared
length in this case is ‖(0.2857). |Y 〉+ (0.2857). |Z〉 ‖2 = 2×0.28572 = 0.1632 = 8

49 .

4.3 Logical Leaps

An appealing feature of PSI is the capacity for efficient yet approximate inference
across multiple reasoning pathways simultaneously. This is accomplished by trans-
forming the task of exploring these pathways into the task of comparing the similarity
between concept vector representations. Consider once again the collection of predi-
cations in Table 1, and the task of estimating the strength of the indirect relationship
between the concepts “prozac” and “mdd” across the predicate path ISA:TREATS.
One way to think of this task is as the estimation of the probabilities of a set of transi-
tions, shown in Figure 1. Though this is a schematic representation, it is worth noting
that any vector in the PSI space can be interpreted as a position, and so the notion of a
journey from concept to concept is arguably more literal than analogical.

One way of estimating the probability of “getting from” prozac “to” mdd along
this pathway would be to use a Markovian approach in accordance with the laws of
classical probability. Specifically, we assume the probability of reaching a destination

Table 3. Simulations in 1000-dimensional Complex PSI Space. “mdd” = Major Depressive Dis-
order. “ssri” = Selective Serotonin Reuptake Inhibitor.

vector bound product x similarity x probability
S(mdd) E(TREATSINV) ⊗ S(ssri) 0.8001 ± 0.0049 0.6402 ± 0.0078
S(mdd) E(TREATSINV) ⊗ S(fluoxetine) 0.6002 ± 0.0116 0.3603 ± 0.0139



prozac

fluoxetine

ssri

mddISA TREATS

0.64

0.8

0.36

0.6

0.3265

0.5714

0.5102

0.7143

Fig. 1. Transition Probabilities and Amplitudes

reachable by two disjoint alternative paths is the sum of the probabilities of each of
the paths, where the probability of a path is the product of the probabilities of the
transitions along this path.3 The probability of our semantic journey would then be
(0.5102×0.36)+(0.3265×0.64) = 0.3926. Alternately, we could utilize Feynman’s rules
for calculating probabilities across multiple indistinguishable paths [21], applied to
model cognitive phenomena in [22]. In contrast to the Markov approach, probability
would then be estimated as the square of the sum of the path amplitudes, which are
the products of the component amplitudes in each path - the lengths of the projections
of the (semantic) state vectors onto the relevant (elemental) basis vectors. With |Sp〉
representing the vector product S(prozac) � E(ISA) and |Sm〉 representing the vector
product S(mdd) � E(TREATS− INV), and the basis vectors |E〉, |F 〉 representing
elemental vectors E(ssri) and E(fluoxetine) respectively, the component amplitudes
are ‖ |E〉〈E|Sp〉 ‖ = 0.5714; ‖ |E〉〈E|Sm〉 ‖ = 0.8; ‖ |F 〉〈F |Sp〉 ‖ = 0.7143; and
‖ |F 〉〈F |Sm〉 ‖ = 0.6. The combined probability of our semantic journey would then
be
(
(0.5714× 0.8) + (0.7143× 0.6)

)2
= 0.7845.

Which, if any, of these probabilities correspond to the estimation of distance in
pPSI? Distance across a specified predicate path in PSI is measured by binding the se-
mantic concept vector for one concept to the inverse of the product of the “release” op-
eration on elemental vectors representing the predicates concerned, and comparing the
result to the other semantic concept vector. With pPSI, for our example this would be ac-
complished by measuring the inner product of the semantic vector |Sm〉 = S(mdd) and
the vector |Spit〉 = S(prozac) � E(ISA) ⊗ E(TREATS-INV). This gives the length
of the projection of one vector onto the other, 〈Spit|Sm〉 = 〈Sm|Spit〉, and squaring this
length gives an estimate of the probability of the journey from one concept to another
across this path, 〈Spit|Sm〉2. Over 1,000 simulations with different random initializa-
tions, the mean squared length of this projection was 0.7843 ± 0.0075, corresponding
to the probability estimated using rules of quantum probability.

5 Evaluating HHRR

That HHRR more accurately preserves probability amplitudes during encoding sug-
gests it may offer advantages over CHRR in predictive modeling experiments. To eval-

3 We consider paths to be disjoint if they do not share any points along the path except for the
beginning and end. Combining the probabilities of paths with intersections is more difficult,
but in the case of 2-step paths, distinct paths are always disjoint in this sense.



uate this hypothesis, we repeated part of the experiments documented in [23] in which
the length of the projection of a drug’s semantic vector into a subspace derived from
vector representations of ten PSI reasoning pathways was used to rank order a set of
1398 pharmaceutical agents with respect to their likely activity against prostate can-
cer cells in high-throughput screening experiments. In the original experiments, which
used the BSC [18] as a VSA, reasoning pathways were inferred from known thera-
peutic relationships. We re-used the pathways from the “Knowledge Withheld” con-
dition, in which predications directly linking a pharmaceutical agent and a type of
cancer were withheld from the model. Unlike HRR, the binding operator in the BSC
is its own inverse, so directionality of a predicate pathway is not encoded. Conse-
quently, we used the pathway directionalities suggested in Figure 2 of the original pa-
per. We generated 2000, 4000 and 8000-dimensional CHRR and HHRR spaces from
version 24.2 of the publicly available SemMedDB database of semantic predications
[24], containing 70,364,020 predications extracted from 23,921,088 MEDLINE cita-
tions. Concepts occurring 500,000 times or more in the set were excluded from the
analysis, and only predications involving predicates in the set {AFFECTS, ASSO-
CIATED WITH, AUGMENTS, CAUSES, COEXISTS WITH, DISRUPTS, IN-
HIBITS, INTERACTS WITH, ISA, PREDISPOSES, PREVENTS, SAME AS,
STIMULATES, TREATS} were encoded. To accommodate inference across triple-
predicate pathways, we also created second-degree semantic vectors [25] for the cue
concepts “hormone-refractory prostate cancer” and “prostate carcinoma” as weighted
superpositions of the semantic vectors for all concepts that occurred as the subject of an
ASSOCIATED WITH relationship with them. These superposition operations, and
those occurring during training, were weighted using the square root of the predica-
tion frequency, which was kept constant across models to isolate differences between
CHRR and HHRR. Elemental vectors were generated using the deterministic procedure
described in [26], so were identical across models with common dimensionality.
For each cue concept, a subspace was generated by applying the Gram-Schmidt pro-
cedure to a set of ten vectors, each constructed following the pattern S(disease) �
E(PRED1) ⊗ E(PRED2), where S(disease) represents either the first- or second-order
semantic vector for one of the cue concepts. The semantic vectors of the 1398 phar-
maceutical agents in the set were then projected into these subspaces, to measure the
strength of their relatedness to the cue concepts across the reasoning pathways from
[23]. The rank of each of the 68 agents that were active against PC3 cells with a growth
rate of 1.5 standard deviations or more below the average across agents was then evalu-
ated. The results of these experiments are shown in Table 2, which gives the area under
the receiver operator characteristic curve (AUROC) for each model, with an AUROC
of 0.5 anticipated with a random ordering of the agents. HHRR outperforms CHRR
across both cue concepts and at all dimensionalities, supporting the hypothesis that the
additional representational power it provides offers advantages for predictive modeling.

6 Discussion

In this paper, we developed a method through which the probabilities of encountering
particular predications in a collection are embedded in a reduced-dimensional geomet-
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Fig. 2. Predictive modeling experiments. X axis = AUROC (≈ 0.5 with random selection). Y axis
= dimensionality. prca=“prostate carcinoma”. hrpca=“hormone-refractory prostate cancer”.

ric space. This reveals a new perspective on PSI, in which the logical operations it
mediates can be interpreted probabilistically, providing a principled way to combine
PSI’s estimates with estimates of probability derived from other sources. It also pro-
vides the means to define the meaning of the measures of association that PSI produces.
Predicate-specific strength of association between concepts that are directly related (e.g.
between S(mdd) and E(fluoxetine)⊗E(TREATS) can now be defined as the magni-
tude of the probability amplitude of drawing a particular predication from the set of
predications involving a concept. Disjunction and negation operators applied to PSI
spaces can now also be interpreted probabilistically, providing a closer correspondence
to Birkhoff and von Neumann’s quantum logic of “experimental propositions” [9] than
when these operators yield abstract similarity metrics that permit a geometric interpre-
tation only. In addition, the association strengths measured using “logical leaps” across
dual-predicate paths that subsume multiple relationships can be interpreted probabilisti-
cally based on squared amplitudes, in accordance with the rules of quantum probability.
Of note, these measurements are conducted without recourse to the elemental vectors
representing the middle terms that lie along a predicate path. Consequently, the possible
pathways are indistinguishable at the time the estimation is made, a prerequisite to the
application of squared sum of amplitudes to estimate path probabilities [21].

To mediate this interpretation, we developed a novel VSA variant, HHRR. HHRR
is a modification of CHRR, and shows advantages over it in predictive modeling exper-
iments. These advantages may be attributed to additional representational power pro-
vided by relaxing the constraint that semantic vector coordinates lie on the unit circle of
the complex plane. As elemental vector coordinates still maintain this constraint, this
results in a delegation of representational duties in which semantic and distributional
information are encoded by the phase angles and magnitudes of circular vectors respec-
tively. This raises implementation issues, such as the extent to which the discretized



representation of phase angles (described in [17]) affects the resolution with which se-
mantic information is encoded, which we will explore in future work. As noted by De
Vine, superposition in CHRR suggests an interpretation involving interference effects
[17] - superposing circular components with similar phase angles will result in posi-
tive interference, while components with dissimilar phase angles will exhibit negative
interference. The effects of these interference effects on the relative magnitudes of the
circular components are preserved by HHRR, but not by CHRR, after normalization.
Our empirical results suggest HHRR is better positioned to encode distributional in-
formation. This was not the primary concern of Plate’s original work, which focused
on the encoding and retrieval of representations of combinations of discrete symbols
[16], but is important for applications in distributional informatics and information re-
trieval. Predictive modeling may be further improved through application of supervised
machine learning approaches to pPSI vectors, which we will explore in future work.

7 Conclusion

We developed a probabilistic interpretation of PSI, revealing previously unrecognized
connections to quantum theory. This development required generation of a novel VSA
variant, with improved performance in predictive modeling experiments.

Acknowledgments: This research was supported by US National Library of Medicine
grant R01 LM011563. We would like to acknowledge Lance De Vine, for contributing
the CHRR implementation that was adapted in the current research.

References

1. T. Cohen, R. Schvaneveldt, and T. Rindflesch, “Predication-based semantic indexing: Per-
mutations as a means to encode predications in semantic space,” AMIA Annu Symp Proc.,
pp. 114–8, 2009.

2. D. Widdows and T. Cohen, “Reasoning with vectors: a continuous model for fast robust
inference,” Logic Journal of IGPL, p. jzu028, Nov. 2014.

3. T. Cohen and D. Widdows, “Empirical distributional semantics: methods and biomedical
applications,” Journal of Biomedical Informatics, vol. 42, pp. 390–405, Apr. 2009.

4. T. K. Landauer and S. T. Dumais, “A solution to plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of knowledge,” Psychological Review,
vol. 104, pp. 211–240, 1997.

5. T. C. Rindflesch and M. Fiszman, “The interaction of domain knowledge and linguistic
structure in natural language processing: interpreting hypernymic propositions in biomed-
ical text,” Journal of Biomedical Informatics, vol. 36, pp. 462–477, 2003.

6. D. Widdows and S. Peters, “Word Vectors and Quantum Logic Experiments with negation
and disjunction,” in Proceedings of Mathematics of Language 8 (R. T. Oehrle and J. Rogers,
eds.), vol. 8, 2003.

7. D. Aerts and M. Czachor, “Quantum aspects of semantic analysis and symbolic artificial
intelligence,” J. Phys. A: Math. Gen., vol. 37, pp. L123–L132, 2004.



8. P. D. Bruza and R. J. Cole, “Quantum Logic of Semantic Space: An Exploratory Inves-
tigation of Context Effects in Practical Reasoning,” in Artemov, S., Barringer, H., d’Avila
Garcez, A.S., and Woods, J.H. (Eds.). We Will Show Them: Essays in Honour of Dov Gab-
bay., pp. 339–361, College Publications, London, UK., 2005.

9. G. Birkhoff and J. von Neumann, “The logic of quantum mechanics,” Annals of Mathematics,
vol. 37, pp. 823–843, 1936.

10. T. Cohen, D. Widdows, S. R., and T. Rindflesch, “Logical leaps and quantum connectives:
Forging paths through predication space,” in Proc AAAI Fall Symposium on Quantum Infor-
matics for Cognitive, Social, and Semantic Processes (QI 2010), 2010.

11. T. Cohen, D. Widdows, L. De Vine, R. Schvaneveldt, and T. C. Rindflesch, “Many Paths
Lead to Discovery: Analogical Retrieval of Cancer Therapies,” in Quantum Interaction (J. R.
Busemeyer, F. Dubois, A. Lambert-Mogiliansky, and M. Melucci, eds.), no. 7620 in Lecture
Notes in Computer Science, pp. 90–101, Springer Berlin Heidelberg, Jan. 2012.

12. T. Cohen, D. Widdows, R. Schvaneveldt, and T. Rindflesch, “Finding schizophrenia’s prozac:
Emergent relational similarity in predication space,” QI’11. Proc 5th International Sympo-
sium on Quantum Interactions. Springer-Verlag Berlin, Heidelberg., 2011.

13. K. van Rijsbergen, The Geometry of Information Retrieval. Cambridge Univ Press, 2004.
14. R. W. Gayler, “Vector symbolic architectures answer jackendoff’s challenges for cognitive

neuroscience,” in In Peter Slezak (Ed.), ICCS/ASCS International Conference on Cognitive
Science, (Sydney, Australia. University of New South Wales.), pp. 133–138, 2004.

15. Widdows, D, Cohen, T, and DeVine, L, “Real, Complex, and Binary Semantic Vectors,” in
Quantum Interaction (J. R. Busemeyer, F. Dubois, A. Lambert-Mogiliansky, and M. Melucci,
eds.), no. 7620 in LNCS, Paris, France: Springer Berlin Heidelberg, 2012.

16. T. A. Plate, Holographic Reduced Representation: Distributed Representation for Cognitive
Structures. Stanford, CA.: CSLI Publications, 2003.

17. L. De Vine and P. Bruza, “Semantic oscillations: Encoding context and structure in com-
plex valued holographic vectors,” Quantum Informatics for Cognitive, Social, and Semantic
Processes (QI 2010), 2010.

18. P. Kanerva, “The spatter code for encoding concepts at many levels,” in ICANN, (London),
pp. 226–229, Springer, 1994.

19. P. Kanerva, “Hyperdimensional computing: An introduction to computing in distributed rep-
resentation with high-dimensional random vectors,” Cognitive Computation, vol. 1, no. 2,
pp. 139–159, 2009.

20. P. Kanerva, J. Kristofersson, and A. Holst, “Random indexing of text samples for latent
semantic analysis,” Proceedings of the 22nd Annual Conference of the Cognitive Science
Society, vol. 1036, 2000.

21. R. Feynman and A. Hibbs, Quantum mechanics and path integrals. MacGraw Hill; New
York, 1965.

22. J. R. Busemeyer, Z. Wang, and A. Lambert-Mogiliansky, “Empirical comparison of markov
and quantum models of decision making,” Journal of Mathematical Psychology, vol. 53,
no. 5, pp. 423–433, 2009.

23. T. Cohen, D. Widdows, C. Stephan, R. Zinner, J. Kim, T. Rindflesch, and P. Davies, “Pre-
dicting high-throughput screening results with scalable literature-based discovery methods,”
CPT: pharmacometrics & systems pharmacology, vol. 3, no. 10, p. e140, 2014.

24. H. Kilicoglu, D. Shin, M. Fiszman, G. Rosemblat, and T. C. Rindflesch, “Semmeddb:
a pubmed-scale repository of biomedical semantic predications,” Bioinformatics, vol. 28,
no. 23, pp. 3158–3160, 2012.

25. T. Cohen, D. Widdows, R. Schvaneveldt, and T. Rindflesch, “Discovery at a distance: Farther
journeys in predication space.,” in Proc First International Workshop on the role of Semantic
Web in Literature-Based Discovery (SWLBD2012), (Philadelphia, PA), Oct. 2012.



26. M. Wahle, D. Widdows, J. R. Herskovic, E. V. Bernstam, and T. Cohen, “Deterministic
Binary Vectors for Efficient Automated Indexing of MEDLINE/PubMed Abstracts,” AMIA
Annual Symposium Proceedings, vol. 2012, pp. 940–949, Nov. 2012.


