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A DOLBEAULT-TYPE DOUBLE COMPLEX ON QUATERNIONIC
MANIFOLDS∗

DOMINIC WIDDOWS†

1. Introduction. This paper describes a new double complex of differential
forms on hypercomplex or quaternionic manifolds. This is to date the clearest quater-
nionic version of the more familiar Dolbeault complex, used throughout complex ge-
ometry. It is hoped that readers familiar with complex geometry will find the new
ideas both natural and familiar. An important thread will be to examine the role
played by the group U(1) of unit complex numbers in complex geometry: complex
geometry is then translated into quaternionic geometry by replacing U(1) with the
group Sp(1) of unit quaternions. This approach is rewarding because of the simplicity
of the representations of the groups U(1) and Sp(1), which makes their action much
easier to understand than those of the groups GL(n, C), GL(n, H) and Sp(1)GL(n, H).

The paper is arranged as follows. Section 2 reviews background material from
complex and quaternionic geometry, including the definitions of complex, hypercom-
plex and quaternionic manifolds, and the twistor space of a quaternionic manifold,
an associated complex manifold discovered by both Salamon and Bérard Bergery [B,
Chapter 14]. Section 2 also recalls some basic facts about Sp(1)-representations, their
weights and tensor products, which we later use to decompose forms on quaternionic
manifolds.

Section 3 reviews the decomposition of differential forms in complex geometry, and
the resulting Dolbeault complex. As well as the standard decomposition of complex-
valued forms, we describe the less familiar decomposition of real-valued forms. The
resulting ‘real Dolbeault complex’ is even more closely akin to the new quaternionic
complex because they both form isosceles triangles (as opposed to the diamond con-
figuration of the standard Dolbeault complex).

Section 4 surveys previous work on the decomposition of differential forms in
quaternionic geometry. Kraines [K] and Bonan [Bo] obtained a decomposition of
forms on quaternionic Kähler manifolds by taking successive exterior products with
the fundamental 4-form. Swann [Sw] and more recently Semmelmann and Weingart
[SeW] considered the decomposition of these forms as Sp(1)Sp(n)-representations. In
the non-Riemannian setting, Salamon [S2] used the coarser decomposition of forms on
quaternionic manifolds into Sp(1)GL(n, H)- representations, resulting in a differential
complex which forms the top row of the new double complex. Much of this algebra
and geometry can be inferred from Fujiki’s comprehensive article [F], which describes
much of the theory underlying this whole area of research.

The heart of this paper is Section 5, which constructs the analogue of the Dol-
beault complex in quaternionic geometry. The complex structure I is replaced by
the (possibly local) almost complex structures I, J and K and the group U(1) of
unit complex numbers is replaced by the group Sp(1) of unit quaternions. Despite
the possible lack of global complex structures on quaternionic manifolds, the Casimir
operator I2 + J2 + K2 still makes invariant sense. It follows that the decomposition
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of ΛkT ∗M into irreducible Sp(1)-representations is also invariant. A straightforward
calculation using weights leads to the following result (Proposition 5.1):

ΛkT ∗M ∼=

k
⊕

r=0

[(
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2

)(
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Vr,

where M4n is a quaternionic manifold, Vr is the Sp(1)-representation with highest
weight r, and r ≡ k mod 2. It follows from the Clebsch-Gordon formula Vr ⊗ V1

∼=
Vr+1⊕Vr−1 that the exterior derivative of a form in the Vr component of ΛkT ∗M has
components only in the Vr+1 and Vr−1 components of Λk+1T ∗M . This demonstrates
with reassuring simplicity that this decomposition naturally leads to a new double
complex. As with the Dolbeault complex, the exterior differential dω of a k-form ω

can be split up into the components Dω and Dω, which are the components of dω

lying in Sp(1)-representations of higher and lower weight respectively. We describe
the operators D and D and define new cohomology groups.

In Section 6 we determine where the (upward) complex is elliptic. This proves
to be a tricky problem, requiring further decomposition and careful analysis. Fortu-
nately, this hard work proves to be well worthwhile, as the double complex is shown
to be elliptic in most places. Like the real Dolbeault complex, ellipticity only fails at
the bottom of the isosceles triangle of spaces where D = 0 and D = d, breaking the
usual pattern which relies on studying non-trivial projection maps.

Finally, in Section 7 we consider the extra opportunities which present themselves
when working on quaternionic Kähler and hypercomplex manifolds, noting particu-
larly the potential for quaternionic analysis on hypercomplex manifolds.

2. Background Material. This section contains background information in
complex and quaternionic geometry and recalls some basic facts concerning the algebra
of Sp(1)-representations.

2.1. Complex, Hypercomplex and Quaternionic Manifolds. An almost
complex structure on a 2n-dimensional real manifold M is a smooth tensor I ∈
C∞(End(TM)) such that I2 = − idTM . An almost complex structure I is said to be
integrable if and only if the Nijenhuis tensor of I

NI(X,Y ) = [X,Y ] + I[IX, Y ] + I[X, IY ]− [IX, IY ]

vanishes for all X,Y ∈ C∞(TM), for all x ∈ M . In this case it can be proved that
the almost complex structure I arises from a suitable set of holomorphic coordinates
on M , and the pair (M, I) is said to be a complex manifold. This way of defining a
complex manifold adapts itself well to the quaternions.

Definition 2.1 An almost hypercomplex structure on a 4n-dimensional manifold
M is a triple (I, J,K) of almost complex structures on M which satisfy the relation
IJ = K. An almost hypercomplex structure on M defines an isomorphism TxM ∼= H

n

at each point x ∈ M .
If all of the complex structures are integrable then (I, J,K) is called a hypercom-

plex structure on M , and M is a hypercomplex manifold.

Joyce [J1] has demonstrated that certain compact Lie groups and homogeneous
spaces are hypercomplex manifolds. However, not all of the manifolds which we
wish to describe as ‘quaternionic’ admit hypercomplex structures. For example, the
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quaternionic projective line HP 1 is diffeomorphic to the 4-sphere S4. It is well-known
that S4 does not even admit a global almost complex structure; so HP 1 can certainly
not be hypercomplex, despite its local properties being extremely like those of the
quaternions.

The reason (and the solution) for this difficulty is effectively described in terms
of G-structures on manifolds. Let P be the principal frame bundle of M , i.e. the
GL(n, R)-bundle whose fibre over x ∈ M is the group of isomorphisms TxM ∼= R

4n.
Let G be a Lie subgroup of GL(n, R). A G-structure Q on M is a principal subbundle
of P with structure group G.

Suppose M2n has an almost complex structure. The group of automorphisms of
TxM preserving such a structure is isomorphic to GL(n, C). Thus an almost complex
structure I and a GL(n, C)-structure Q on M contain the same information. The
bundle Q admits a torsion-free connection if and only if there is a torsion-free linear
connection ∇ on M with ∇I = 0, in which case it is easy to show that I is integrable.
Thus a complex manifold is precisely a real manifold M 2n with a GL(n, C)-structure
Q admitting a torsion-free connection.

A hypercomplex manifold is a real manifold M with a torsion-free
GL(n, H)-structure Q. However, the group GL(n, H) is not the largest subgroup
of GL(4n, R) preserving the quaternionic structure of H

n. If GL(n, H) acts on H
n

by right-multiplication by n × n quaternionic matrices, then the action of GL(n, H)
commutes with that of the left H-action of the group GL(1, H) ∼= H

∗. Thus the
group of symmetries of H

n is the product GL(1, H) ×R∗ GL(n, H). Scaling the
first factor by a real multiple of the identity reduces the first factor to Sp(1), and
GL(1, H)×R∗ GL(n, H) is the same as Sp(1)×Z2

GL(n, H) which is normally abbrevi-
ated to Sp(1)GL(n, H).

Definition 2.2 [S2, 1.1] A quaternionic manifold is a 4n-dimensional real man-
ifold M (n ≥ 2) with an Sp(1)GL(n, H)-structure Q admitting a torsion-free connec-
tion.

When n = 1 the situation is different, since Sp(1)Sp(1) ∼= SO(4). In four di-
mensions we make the special definition that a quaternionic manifold is a self-dual
conformal manifold, for reasons given below.

In terms of tensors, quaternionic manifolds are a generalisation of hypercomplex
manifolds in the following way. Each tangent space TxM still admits a hypercomplex
structure giving an isomorphism TxM ∼= H

n, but this isomorphism does not neces-
sarily arise from globally defined complex structures on M . There is still an invariant
S2-bundle ZM of local almost-complex structures satisfying the equation IJ = K,
but it is free to ‘rotate’.

If M is a quaternionic manifold of dimension 4n then the S2-bundle ZM is natu-
rally a complex manifold of (real) dimension 4n + 2, a result due to both S. Salamon
and L. Bérard Bergery. [B, Theorem 14.68]. It has much in common with Roger
Penrose’s celebrated twistor transform which associates a complex 3-manifold to a
self-dual real 4-manifold [B, Ch 13], [S3, Ch 7]. For this reason, Definition 2.2 is said
to be analogous to the definition of a self-dual manifold in four dimensions, and ZM

is called the twistor space of M . This construction allows problems in quaternionic
geometry to be translated into complex geometry, though unfortunately the twistor
space is often more complicated than the original quaternionic manifold.

If the structure group G is compact then a torsion-free G-structure is compatible
with a Riemannian metric. Thus the three definitions above all have Riemannian
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counterparts: a complex manifold whose GL(n, C)-structure reduces to a torsion-free
U(n)-structure is called a Kähler manifold; a hypercomplex manifold whose GL(n, H)-
structure reduces to a torsion-free Sp(n)-structure is said to be hyperkähler and
a quaternionic manifold whose Sp(1)GL(n, H)-structure is said to be quaternionic
Kähler. Hyperkähler and quaternionic Kähler manifolds have been extensively stud-
ied: Fujiki’s account of hyperkähler manifolds [F] and Besse’s account of quaternionic
Kähler manifolds [B, Chapter 14] are good overviews.

2.2. Sp(1)-Representations. The group Sp(1) ∼= SU(2) of unit quaternions
plays a role in quaternionic geometry analogous to that of the circle group U(1)
in complex geometry. Standard texts on Sp(1)-representations include [BD, §2.5]
and [FH, Lecture 11]. The second of these is particularly useful for describ-
ing Sp(1)-representations and their tensor products using weights of the action of
sp(1) ⊗ C ∼= sl(2, C), a technique we will use for decomposing exterior forms on
quaternionic manifolds. We recall the most salient points.

Let V1 be the basic representation of Sp(1) on C
2 given by left-action of matrices

upon column vectors. The nth symmetric power of V1 is a representation on C
n+1

which is written

Vn = Sn(V1).

The representation Vn is irreducible and every irreducible representation of Sp(1)
is of the form Vn for some nonnegative n ∈ Z. Every representation of Sp(1) can
be uniquely written as a sum of these irreducible representations. Each irreducible
representation Vn is an eigenspace of the Casimir operator I2+J2+K2 with eigenvalue
−n(n + 2).

The irreducible representation Vn can be decomposed into weight spaces under
the action of a Cartan subalgebra of sl(2, C). Each weight space is one-dimensional
and the weights are the integers

{n, n− 2, . . . , n− 2k, . . . , 2− n,−n}.

Thus Vn is also characterised by being the unique irreducible representation of sl(2, C)
with highest weight n.

It follows from the Leibniz rule I(a ⊗ b) = I(a) ⊗ b + a ⊗ I(b) for Lie algebra
representations that if a ∈ Vm and b ∈ Vn are weight vectors of I with weights λ and µ

then a⊗b is a weight vector of Vm⊗Vn with weight λ+µ. Weight space decompositions
can thus be used to determine tensor, symmetric and exterior products of Sp(1)-
representations. Amongst other things, this enables us to calculate the irreducible
decomposition of the (diagonal) action of Sp(1) on the tensor product Vm ⊗ Vn. This
is given by the famous Clebsch-Gordon formula

Vm⊗Vn
∼= Vm+n⊕Vm+n−2⊕· · ·⊕Vm−n+2⊕Vm−n for m ≥ n. (2.1)

3. Differential Forms on Complex Manifolds. Let (M, I) be a complex
manifold. The complexified cotangent space splits into eigenspaces of I with eigen-
values ±i, T ∗MC = T ∗1,0M ⊕ T ∗0,1M , which are called the holomorphic and antiholo-
morphic cotangent spaces respectively. This induces the familiar decomposition into
types of exterior k-forms

ΛkT ∗MC =
⊕

p+q=k

Λp(T ∗1,0M)⊗ Λq(T ∗0,1M),
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Fig. 3.1. The Dolbeault Complex
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where the bundle Λp,qM = ΛpT ∗1,0M⊗ΛqT ∗0,1M is called the bundle of (p, q)-forms on
M . A smooth section of the bundle Λp,qM is called a differential form of type (p, q)
or just a (p, q)-form. We write Ωp,q(M) for the set of (p, q)-forms on M , so

Ωp,q(M) = C∞(M,Λp,qM) and Ωk(M) =
⊕

p+q=k

Ωp,q(M).

Define two first-order differential operators,

∂ : Ωp,q(M) → Ωp+1,q(M)
∂ = πp+1,q ◦ d

and
∂ : Ωp,q(M) → Ωp,q+1(M)

∂ = πp,q+1 ◦ d,
(3.1)

where πp,q denotes the natural projection from ΛkT ∗MC onto Λp,qM . The operators
∂ and ∂ are called the Dolbeault operators.

These definitions rely only on the fact that I is an almost complex structure. If
in addition I is integrable then these are the only two components of the exterior
differential d, so that d = ∂ + ∂ [W, p.34]. An immediate consequence of this is that

on a complex manifold M , ∂2 = ∂∂ + ∂∂ = ∂
2

= 0. This gives rise to the Dolbeault
complex.

The purpose of this paper is to present the quaternionic analogue of this double
complex. To do this, note that the bundle Λp,qM is an eigenspace of the induced
action of I on ΛkT ∗MC, since for ω ∈ Λp,qM , I(ω) = i(p − q)ω. The decomposition
into types can therefore be thought of as a decomposition of ΛkT ∗MC into u(1)-
representations, where the complex structure I generates a copy of the Lie algebra
u(1). When we replace the Lie algebra u(1) = 〈I〉 with sp(1) = 〈I, J,K〉 and decom-
pose ΛkT ∗M into irreducible sp(1)-representations, a similarly interesting structure
arises in quaternionic geometry.

3.1. Real forms on Complex Manifolds. It is less well-known that a similar
splitting occurs for real-valued exterior forms. This is an instructive case, because the
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resulting double complex is even more closely akin to the new quaternionic double
complex.

Let M be a complex manifold and let ω ∈ Λp,q = Λp,qM . For simplicity’s sake
assume that p > q throughout. Then ω ∈ Λq,p, and ω + ω is a real-valued exterior
form. Define the space of such forms,

(Λp,q ⊕ Λq,p)R = [Λp,q ⊕ Λq,p] ≡ [[Λp,q]].

The space [[Λp,q]] is a real vector bundle associated to the principal GL(n, C)-bundle
defined by the complex structure. The first square bracket indicates real forms and
the second the direct sum, the notation following that of Reyes-Carrión [R, §3.1], who
uses the ensuing decomposition on Kähler manifolds.

This gives a decomposition of real-valued exterior forms,

Λk
RT ∗M =

⊕

p+q=k
p>q

[[Λp,q]]⊕ [Λ
k
2 , k

2 ]. (3.2)

The condition p > q ensures that we have no repetition. The bundle [Λ
k
2 , k

2 ] only
appears when k is even. It is its own conjugate and so naturally a real vector bundle
associated to the trivial representation (i.e. the zero weight space) of the Lie algebra
u(1) = 〈I〉.

Let [[Ωp,q]] = C∞([[Λp,q]]), so that for ω ∈ Ωp,q(M), ω + ω ∈ [[Ωp,q]]. Then

d(ω + ω) = (∂ω + ∂ω) + (∂ω + ∂ω) ∈ [[Ωp+1,q]]⊕ [[Ωp,q+1]].

Call the first of these components [∂]ω and the second [∂]ω. This defines real analogues
of the Dolbeault operators. The ‘double complex’ equations [∂]2 = [∂][∂] + [∂][∂] =

[∂]2 = 0 follow directly from decomposing the equation d2 = 0. For the space [Λ
k
2 , k

2 ]

there is no space [[Λ
k
2 , k

2 +1]] because p > q, so [∂] = 0 and there is just one operator
[∂] = d.

Fig. 3.2. The Real Dolbeault Complex
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Thus there is a double complex of real forms on a complex manifold, obtained
by decomposing Λk

xT ∗M into subrepresentations of the action of u(1) = 〈I〉, induced
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from the action on T ∗x M . The main difference is that this real-valued complex gives
an isosceles triangle of spaces, whereas the standard Dolbeault complex gives a full
diamond. Amalgamating the spaces Λp,q and Λq,p into the single real space [[Λp,q]]
has effectively folded this diamond in half. This structure is very similar to that of
the new quaternionic double complex which is the main subject of this paper.

Ellipticity. A complex 0
Φ0−→ C∞(E0)

Φ1−→ C∞(E1)
Φ2−→ . . .

Φn−→ C∞(En)
Φn+1
−→ 0

is said to be elliptic at Ei if the principal symbol sequence Ei−1

σΦi−→ Ei

σΦi+1
−→ Ei+1 is

exact for all ξ ∈ T ∗x M and for all x ∈ M .
The link between elliptic complexes and elliptic operators (those whose principal

symbol is an isomorphism) is as follows. Given any metric on each Ei, define a formal
adjoint Φ∗i : Ei → Ei−1. The complex is elliptic at Ei if and only if the Laplacian
Φ∗i Φi + Φi−1Φ

∗
i−1 is an elliptic operator. A thorough description of this topic is given

by Wells [W, Chapter 5].
For our operators, it suffices to note that the principal symbol of the exterior

differential d : Ωk(M) → Ωk+1(M) is σd(x, ξ)ω = ω ∧ ξ. Let π : ΛkT ∗M → E be the
projection from ΛkT ∗M onto some subspace E. It follows that the principal symbol
of π ◦ d on Λk−1T ∗M is just σπ◦d(x, ξ)ω = π(ω ∧ ξ).

It is important to establish where a differential complex is elliptic for various
reasons: for example, an elliptic complex on a compact manifold always has finite-
dimensional cohomology groups [W, Theorem 5.2, p. 147]. The de Rham and Dol-
beault complexes are elliptic everywhere. The real Dolbeault complex of Figure 3.2
is elliptic in most places, but not everywhere. Interestingly, it fails to be elliptic in
almost exactly the same places as the new quaternionic double complex, and for the
same reasons.

Proposition 3.1. For p > 0, the upward complex

0 −→ [Ωp,p]
d
−→ [[Ωp+1,p]]

[∂]
−→ [[Ωp+2,p]]

[∂]
−→ . . .

is elliptic everywhere except at the first two spaces [Ωp,p] and [[Ωp+1,p]].
For p = 0, the ‘leading edge’ complex

0 −→ [Ω0,0]
d
−→ [[Ω1,0]]

[∂]
−→ [[Ω2,0]]

[∂]
−→ . . .

is elliptic everywhere except at [[Ω1,0]] = Ω1(M).

Proof. When p > q + 1, the short sequence [[Ωp−1,q]]
[∂]
−→ [[Ωp,q]]

[∂]
−→ [[Ωp+1,q]] is

a real form of the sequence

Ωp−1,q ∂
−→ Ωp,q ∂

−→ Ωp+1,q
⊕ ⊕ ⊕

Ωq,p−1 ∂
−→ Ωq,p ∂

−→ Ωq,p+1.

This is (a real subspace of) the direct sum of two elliptic sequences, and so is elliptic.
Thus we have ellipticity at [[Ωp,q]] whenever p ≥ q + 2.

This leaves us to consider the case when p = q, giving (a real subspace of) the
sequence

0 −→ Ωp,p

∂

↗
↘
∂

Ωp+1,p ∂
−→ Ωp+2,2 −→ . . . etc.

⊕ ⊕

Ωp,p+1 ∂
−→ Ω2,p+2 −→ . . . etc.

(3.3)
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This fails to be elliptic. An easy and instructive way to see this is to consider the
simplest 4-dimensional example M = C

2.
Let e0, e1 = I(e0), e2 and e3 = I(e2) form a basis for T ∗x C

2 ∼= C
2, and let eab...

denote ea ∧ eb ∧ . . . etc. Then I(e01) = e00 − e11 = 0, so e01 ∈ [Λ1,1]. The map from
[Λ1,1] to [[Λ2,1]] is just the exterior differential d. Since σd(x, e0)(e01) = e01 ∧ e0 = 0
the symbol map σd : [Λ1,1] → [[Λ2,1]] is not injective, so the symbol sequence is not
exact at [Λ1,1].

Consider also e123 ∈ [[Λ2,1]]. Then σ[∂](x, e0)(e123) = 0, since there is no bundle
[[Λ3,1]]. But e123 has no e0-factor, so is not the image under σd(x, e0) of any form
α ∈ [Λ1,1]. Thus the symbol sequence fails to be exact at [[Λ2,1]].

It is a simple matter to extend these counterexamples to higher dimensions and
higher exterior powers. For k = 0, the situation is different. It is easy to show that
the complex

0 −→ C∞(M)
d
−→ [[Ω1,0]]

[∂]
−→ [[Ω2,0]] −→ . . . etc.

is elliptic everywhere except at [[Ω1,0]]. �

This last sequence is given particular attention by Reyes-Carrión [R, Lemma 2].
He shows that, when M is Kähler, ellipticity can be regained by adding the space 〈ω〉
to the bundle [[Λ2,0]], where ω is the real Kähler (1, 1)-form.

The real Dolbeault complex is thus elliptic except at the bottom of the isosceles
triangle of spaces. Here the projection from d([Ωp,p]) to [[Ωp+1,p]] is the identity, and
arguments based upon non-trivial projection maps no longer apply. We shall see that
this situation is closely akin to that of differential forms on quaternionic manifolds,
and that techniques motivated by this example yield similar results.

4. Differential Forms on Quaternionic Manifolds. This section describes
previous results in the decomposition of exterior forms in quaternionic geometry.
These fall into two categories: those arising from taking repeated products with the
fundamental 4-form in quaternionic Kähler geometry and those arising from consid-
ering the representations of GL(n, H)Sp(1) on ΛkT ∗M . We are primarily concerned
with the second approach.

The decomposition of differential forms on quaternionic Kähler manifolds began
by considering the fundamental 4-form

Ω = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK ,

where ωI , ωJ and ωK are the local Kähler forms associated to local almost complex
structures I, J and K with IJ = K. The fundamental 4-form is globally defined and
invariant under the induced action of Sp(1)Sp(n) on Λ4T ∗M . Kraines [K] and Bonan
[Bo] used the fundamental 4-form to decompose the space ΛkT ∗M in a similar way to
the Lefschetz decomposition of differential forms on a Kähler manifold [GH, p. 122].
A differential k-form µ is said to be effective if Ω ∧ ∗µ = 0, where ∗ : ΛkT ∗M →
Λ4n−kT ∗M is the Hodge star. This leads to the following theorem:

Theorem 4.1. [K, Theorem 3.5][Bo, Theorem 2] Let M 4n be a quaternionic
Kähler manifold. For k ≤ 2n + 2, every k-form φ admits a unique decomposition

φ =
∑

0≤j≤k/4

Ωj ∧ µk−4j ,

where the µk−4j are effective (k − 4j)-forms.
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Bonan further refines this decomposition for quaternion-valued forms, using exte-
rior multiplication by the globally defined quaternionic 2-form Ψ = i1ωI +i2ωJ +i3ωK .
Note that Ψ ∧Ψ = −2Ω.

Another way to consider the decomposition of forms on a quaternionic manifold
is as subbundles of ΛkT ∗M associated with different representations of the group
Sp(1)GL(n, H). The representation of Sp(1)GL(n, H) on H

n is given by the equation

H
n ⊗R C ∼= V1 ⊗ E, (4.1)

where V1 is the basic representation of Sp(1) on C
2 and E is the basic representation

of GL(n, H) on C
2n. (This uses the standard convention of working with complex

representations, which in the presence of suitable structure maps can be thought of
as complexified real representations. In this case, the structure map is the tensor
product of the quaternionic structures on V1 and E.)

This representation also describes the (co)tangent bundle of a quaternionic man-
ifold in the following way. Following Salamon [S2, §1], if M 4n is a quaternionic man-
ifold with Sp(1)GL(n, H)-structure Q, then the cotangent bundle is a vector bundle
associated with the principal bundle Q and the representation V1 ⊗ E, so that

(T ∗M)C ∼= V1 ⊗ E (4.2)

(though we will usually omit the complexification sign). This induces an
Sp(1)GL(n, H)-action on the bundle of exterior k-forms ΛkT ∗M ,

ΛkT ∗M ∼= Λk(V1 ⊗ E) ∼=

[k/2]
⊕

j=0

Sk−2j(V1)⊗ Lk
j
∼=

[k/2]
⊕

j=0

Vk−2j ⊗ Lk
j , (4.3)

where Lk
j is an irreducible representation of GL(n, H). This decomposition is given

by Salamon [S2, §4], along with more details concerning the nature of the GL(n, H)
representations Lk

j . The relationship between these representations and harmonic
forms on quaternionic Kähler manifolds is treated in detail by Semmelmann and
Weingart [SeW, §6].

If the Sp(1)GL(n, H)-structure on M reduces to an Sp(1)Sp(n)-structure, ΛkT ∗M

can be further decomposed into representations of the compact group Sp(1)Sp(n).
This refinement is performed in detail by Swann [Sw], and used to demonstrate that
if dim M ≥ 8, the vanishing condition ∇Ω = 0 implies that M is quaternionic Kähler
for any torsion-free connection ∇ preserving the Sp(1)Sp(n)-structure.

If we symmetrise completely on V1 in Equation (4.3) to obtain Vk, we must
antisymmetrise completely on E. Salamon therefore defines the irreducible subspace

Ak ∼= Vk ⊗ ΛkE. (4.4)

The bundle Ak can be described using the decomposition into types for the local
almost complex structures on M as follows [S2, Proposition 4.2]:

Ak =
∑

I∈S2

Λk,0
I M. (4.5)

This is because every Sp(1)-representation Vn is generated by its highest weight spaces
taken with respect to all the different linear combinations of I, J and K.
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Letting p denote the natural projection p : ΛkT ∗M → Ak and setting D = p ◦ d,
Salamon defines a sequence of differential operators

0 → C∞(A0)
D=d
→ C∞(A1 = T ∗M)

D
→ C∞(A2)

D
→ . . .

D
→ C∞(A2n) → 0. (4.6)

This is accomplished using only the fact that M has an Sp(1)GL(n, H)-structure; such
a manifold is called ‘almost quaternionic’. The following theorem of Salamon relates
the integrability of such a structure with the sequence of operators in (4.6):

Theorem 4.2. [S2, Theorem 4.1] An almost quaternionic manifold is
quaternionic if and only if (4.6) is a complex.

This theorem is analogous to the familiar result in complex geometry that an

almost complex structure on a manifold is integrable if and only if ∂
2

= 0.
The cohomology of Salamon’s complex (4.6) can be related to the cohomology of

the twistor space as follows.

Theorem 4.3. [MS, Theorem 3] Let M 4n be a quaternionic manifold with twistor
space Z, and let D be the differential operator of (4.6). Then

Hq(Z,O) ∼=

{

Ker(D|C∞(Aq))

D(C∞(Aq−1)) 0 ≤ q ≤ 2n

0 q = 2n + 1.
(4.7)

Other such operators have been defined on types of quaternionic manifolds, called
variously Dirac operators, twistor operators and Fueter operators [Ba], [J2]. Baston
[Ba] used some of these operators to define quaternionic cohomology groups on hy-
perkähler manifolds. An ‘amusing complication’ of Baston’s complexes is that some
of the differential operators involved are second order, and so quite different from
those we define in the next section.

5. Construction of the Double Complex. In this, the most important sec-
tion of the paper, we construct the new double complex on a quaternionic manifold
M by decomposing the action of Sp(1) on ΛkT ∗M inherited from the Sp(1)GL(n, H)-
structure. The top row of this double complex is the complex (4.6) discovered by
Salamon.

Let M4n be a quaternionic manifold. Following Salamon [S2, §1] we can define (at
least locally) vector bundles V1 and E associated to the basic complex representations
of Sp(1) and GL(n, H) respectively, so that T ∗x M ∼= (V1)x ⊗ Ex

∼= V1 ⊗ E as an
Sp(1)GL(n, H)-representation for all x ∈ M . Suppose we consider just the action
of the Sp(1)-factor. Then the (complexified) cotangent space effectively takes the
form V1 ⊗ C

2n ∼= 2nV1. Whilst the bundles V1 and E might be neither globally nor
uniquely defined, the Casimir operator I2 + J2 + K2 is invariant. It follows that,
though the Sp(1)-action on a k-form α might be subject to choice, its spectrum under
the Casimir action, and hence its decomposition into Sp(1)-representations of different
weights, is uniquely and globally defined by the Sp(1)GL(n, H)-structure. Thus the
irreducible decomposition of the Sp(1)-action on ΛkT ∗x M is given by the irreducible
decomposition of the representation Λk(2nV1).

The weight space decomposition of Λk(2nV1) can be computed from that of 2nV1

using standard representation theory (see for example [FH, §11.2]). With respect to
the action of a particular subgroup U(1) ⊂ Sp(1), the representation 2nV1 has weights
+1 and −1, each occurring with multiplicity 2n, and the weights of Λk(2nV1) are the
k-wise distinct sums of these. Each weight r in Λk(2nV1) must therefore be a sum
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of p occurrences of the weight ‘+1’ and p − r occurrences of the weight ‘−1’, where
2p − r = k and 0 ≤ p ≤ k (from which it follows immediately that −k ≤ r ≤ k and
r ≡ k mod 2). The number of ways to choose the p ‘+1’ weights is

(

2n
p

)

, and the

number of ways to choose the (p− r) ‘−1’ weights is
(

2n
p−r

)

, so the multiplicity of the

weight r in the representation Λk(2nV1) is

Mult(r) =

(

2n
k+r
2

)(

2n
k−r
2

)

.

For r ≥ 0, consider the difference Mult(r)−Mult(r + 2). This is the number
of weight spaces of weight r which do not have any corresponding weight space of
weight r + 2. Each such weight space must therefore be the highest weight space in
an irreducible subrepresentation Vr ⊆ ΛkT ∗M , from which it follows that the number
of irreducibles Vr in Λk(2nV1) is equal to Mult(r)−Mult(r + 2). This demonstrates
the following proposition:

Proposition 5.1. Let M 4n be a hypercomplex manifold. The decomposition into
irreducibles of the induced representation of Sp(1) on ΛkT ∗M is

ΛkT ∗M ∼=

k
⊕

r=0

[(

2n
k+r
2

)(

2n
k−r
2

)

−

(

2n
k+r+2

2

)(

2n
k−r−2

2

)]

Vr,

where r ≡ k mod 2.
We will not always write the condition r ≡ k mod 2, assuming that

(

p
q

)

= 0 if
q 6∈ Z.

Definition 5.2 Let M4n be a quaternionic manifold. Define Ek,r to be the
vector subbundle of ΛkT ∗M consisting of Sp(1)-representations with highest weight
r. Define the coefficient

εn
k,r =

(

2n
k+r
2

)(

2n
k−r
2

)

−

(

2n
k+r+2

2

)(

2n
k−r−2

2

)

,

so that (neglecting the GL(n, H)-action) we have Ek,r
∼= εn

k,rVr.

With this notation Proposition 5.1 is written

ΛkT ∗M ∼=

k
⊕

r=0

εn
k,rVr

∼=

k
⊕

r=0

Ek,r.

Our most important result is that this decomposition gives rise to a double complex
of differential forms and operators on a quaternionic manifold.

Theorem 5.3. The exterior derivative d maps C∞(M,Ek,r) to
C∞(M,Ek+1,r+1 ⊕ Ek+1,r−1).

Proof. Let ∇ be a torsion-free linear connection on M preserving the quaternionic
structure. Then ∇ : C∞(M,Ek,r) → C∞(M,Ek,r⊗T ∗M). As Sp(1)-representations,
this is

∇ : C∞(M, εn
k,rVr) → C∞(M, εn

k,rVr ⊗ 2nV1).
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Using the Clebsch-Gordon formula we have εn
k,rVr ⊗ 2nV1

∼= 2nεn
k,r(Vr+1 ⊕ Vr−1).

Thus the image of Ek,r under ∇ is contained in the Vr+1 and Vr−1 summands of
ΛkT ∗M⊗T ∗M . Since ∇ is torsion-free, d = ∧◦∇, so d maps (sections of) Ek,r to the
Vr+1 and Vr−1 summands of Λk+1T ∗M . Thus d : C∞(M,Ek,r) → C∞(M,Ek+1,r+1⊕
Ek+1,r−1). �

This allows us to split the exterior differential d into two ‘quaternionic Dolbeault
operators’.

Definition 5.4 Let πk,r be the natural projection from ΛkT ∗M onto Ek,r.
Define the operators

D : C∞(Ek,r) → C∞(Ek+1,r+1)
D = πk+1,r+1 ◦ d

and
D : C∞(Ek,r) → C∞(Ek+1,r−1)
D = πk+1,r−1 ◦ d.

(5.1)

Theorem 5.3 is equivalent to the following:

Proposition 5.5. On a quaternionic manifold M , we have d = D +D, and so

D2 = DD +DD = D
2

= 0.

Proof. The first equation is equivalent to Theorem 5.3. The rest follows immedi-
ately from decomposing the equation d2 = 0. �

Fig. 5.1. The Quaternionic Double Complex
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Here is our quaternionic analogue of the Dolbeault complex. There are strong sim-
ilarities between this and the real Dolbeault complex (Figure 3.1). Again, instead of a
diamond as in the Dolbeault complex, the quaternionic version only extends upwards
to form an isosceles triangle. This is essentially because there is one irreducible U(1)-
representation for each integer, whereas there is one irreducible Sp(1)-representation
only for each nonnegative integer.

By definition, the bundle Ek,k is the bundle Ak of (4.4) — they are both the
subbundle of ΛkT ∗M which includes all Sp(1)-representations of the form Vk. Thus
the leading edge of the double complex

0 → C∞(E0,0)
D
→ C∞(E1,1)

D
→ C∞(E2,2)

D
→ . . .

D
→ C∞(E2n,2n)

D
→ 0
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is precisely the complex (4.6) discovered by Salamon.

Example 5.6 Four Dimensions
This double complex is already very well-known and understood in four dimen-

sions. Here there is a splitting only in the middle dimension, Λ2T ∗M ∼= V2 ⊕ 3V0.
Let I, J and K be local almost complex structures at x ∈ M , and let e0 ∈ T ∗x M . Let
e1 = I(e0), e2 = J(e0) and e3 = K(e0). In this way we obtain a basis {e0, . . . , e3} for
T ∗x M ∼= H. Using the notation eijk... = ei ∧ ej ∧ ek ∧ . . .etc., define the 2-forms

ω±1 = e01 ± e23, ω±2 = e02 ± e31, ω±3 = e03 ± e12. (5.2)

Then I, J and K all act trivially on the ω−j , so E2,0 = 〈ω−1 , ω−2 , ω−3 〉. The action of

sp(1) on the ω+
j is given by the multiplication table

I(ω+
1 ) = 0

J(ω+
1 ) = −2ω+

3

K(ω+
1 ) = 2ω+

2

I(ω+
2 ) = 2ω+

3

J(ω+
2 ) = 0

K(ω+
2 ) = −2ω+

1

I(ω+
3 ) = −2ω+

3

J(ω+
3 ) = 2ω+

1

K(ω+
3 ) = 0.

(5.3)

These are the relations of the irreducible sp(1)-representation V2, and we see that
E2,2 = 〈ω+

1 , ω+
2 , ω+

3 〉.
These bundles will be familiar to most readers: E2,2 is the bundle of self-dual

2-forms Λ2
+ and E2,0 is the bundle of anti-self-dual 2-forms Λ2

−. The celebrated
splitting Λ2T ∗M ∼= Λ2

+⊕Λ2
− is an invariant of the conformal class of any Riemannian

4-manifold, and I2 + J2 + K2 = −4(∗ + 1), where ∗ : ΛkT ∗M → Λ4−kT ∗M is the
Hodge star map.

This also serves to explain the special definition that a 4-manifold is said to be
quaternionic if it is self-dual and conformal. The relationship between quaternionic,
almost complex and Riemannian structures in four dimensions is described in detail
in [S3, Chapter 7].

Because there is no suitable quaternionic version of holomorphic coordinates,
there is no ‘nice’ co-ordinate expression for a typical section of C∞(Ek,r). In order to
determine the decomposition of a differential form, the simplest way the author has
found is to use the Casimir operator C = I2 + J2 + K2. Consider a k-form α. Then
α ∈ Ek,r if and only if (I2 + J2 + K2)(α) = −r(r + 2)α. This mechanism also allows
us to work out expressions for D and D acting on α.

Lemma 5.7. Let α ∈ C∞(Ek,r). Then

Dα = −
1

4

(

(r − 1) +
1

r + 1
(I2 + J2 + K2)

)

dα

and

Dα =
1

4

(

(r + 3) +
1

r + 1
(I2 + J2 + K2)

)

dα.

Proof. We have dα = Dα + Dα, where Dα ∈ Ek+1,r+1 and Dα ∈ Ek+1,r−1.
Applying the Casimir operator gives

(I2 + J2 + K2)(dα) = −(r + 1)(r + 3)Dα− (r + 1)(r − 1)Dα.
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Rearranging these equations gives Dα and Dα. �

Note that our decomposition is of real- as well as complex-valued forms; the
operators D and D map real forms to real forms.

Writing Dk,r for the particular map D : C∞(Ek,r) → C∞(Ek+1,r+1), we define
the quaternionic cohomology groups

H
k,r
D (M) =

Ker(Dk,r)

Im(Dk−1,r−1)
. (5.4)

Since we have already identified the top row of the double complex with Sala-
mon’s complex (4.6), it is possible to work out the cohomology groups H

k,k
D (M) using

Theorem 4.3. To generalise this theorem to calculate the cohomology of other parts
of the double complex we would need an expression giving the spaces Ek,r in the same
way that Equation (4.5) gives the highest-weight spaces Ek,k

∼= Ak. Another problem
is that Theorem 4.3 relies on the exact sequence

0 −→ Λ1,0
hor −→ Λ1,0 −→ Λ1,0

ver −→ 0

on the twistor space Z, where the horizontal bundle is the pull back from M and the
vertical bundle is the bundle of ‘forms along the fibres’. Taking exterior powers gives
an exact sequence involving Λp,0, but information about the more general spaces Λp,q

for q > 0 is not so forthcoming.

6. Ellipticity and the Double Complex. In this section we shall determine
where our double complex is elliptic and where it is not. Its properties are extremely
like those of the real Dolbeault complex studied earlier: the quaternionic double
complex is elliptic everywhere except on the bottom row. Though this is much more
difficult to prove for the quaternionic double complex, the fundamental reason is the
same as for the real Dolbeault complex: it is the isosceles triangle as opposed to
diamond shape which causes ellipticity to fail for the bottom row, because d = D on
E2k,0 and the projection from d(C∞(E2k,0)) to C∞(E2k+1,1) is the identity.

Here is the main result of this section:

Theorem 6.1. For 2k ≥ 4, the complex

0 → E2k,0
D
→ E2k+1,1

D
→ E2k+2,2

D
→ . . .

D
→ E2n+k,2n−k

D
→ 0

is elliptic everywhere except at E2k,0 and E2k+1,1, where it is not elliptic.
For k = 1 the complex is elliptic everywhere except at E3,1, where it is not elliptic.
For k = 0 the complex is elliptic everywhere.
The rest of this section provides a proof of this theorem.
On a complex manifold M 2n with holomorphic coordinates zj , the exterior forms

dza1 ∧ . . . ∧ dzap ∧ dz̄b1 ∧ . . . ∧ dz̄bq span Λp,q. This allows us to decompose any form
ω ∈ Λp,q, making it much easier to write down the kernels and images of maps which
involve exterior multiplication. On a quaternionic manifold M 4n there is unfortu-
nately no easy way to write down a local frame for the bundle Ek,r, because there
is no quaternionic version of ‘holomorphic coordinates’. However, we can decompose
Ek,r just enough to enable us to prove Theorem 6.1.

A principal observation is that since ellipticity is a local property, we can work on
H

n without loss of generality. Secondly, since GL(n, H) acts transitively on H
n \{0},

if the symbol sequence . . .
σ

e0

−→ Ek,r
σ

e0

−→ Ek+1,r+1
σ

e0

−→ . . . is exact for any nonzero
e0 ∈ T ∗Hn then it is exact for all nonzero ξ ∈ T ∗Hn. To prove Theorem 6.1, we
choose one such e0 and analyse the spaces Ek,r accordingly.
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6.1. Decomposition of the Spaces Ek,r. Let e0 ∈ T ∗x H
n ∼= H

n and let
(I, J,K) be the standard hypercomplex structure on H

n. As in Example 5.6, de-
fine e1 = I(e0), e2 = J(e0) and e3 = K(e0), so that 〈e0, . . . , e3〉 ∼= H. In this way we
single out a particular copy of H which we call H0, obtaining a (nonnatural) splitting
T ∗x H

n ∼= H
n−1⊕H0 which is preserved by action of the hypercomplex structure. This

induces the decomposition Λk
H

n ∼=
⊕4

l=0 Λk−l
H

n−1 ⊗ Λl
H0, which decomposes each

Ek,r ⊂ Λk
H

n according to how many differentials in the H0-direction are present.

Definition 6.2 Define the space El
k,r to be the subspace of Ek,r consisting of

exterior forms with precisely l differentials in the H0-direction, i.e.

El
k,r ≡ Ek,r ∩ (Λk−l

H
n−1 ⊗ Λl

H0).

Then El
k,r is preserved by the induced action of the hypercomplex structure on Λk

H
n.

Thus we obtain an invariant decomposition Ek,r = E0
k,r ⊕ E1

k,r ⊕ E2
k,r ⊕ E3

k,r ⊕ E4
k,r.

Note that we can identify E0
k,r on H

n with Ek,r on H
n−1.

(Throughout the rest of this section, juxtaposition of exterior forms will denote
exterior multiplication, for example αeij means α ∧ eij .)

We can decompose these summands still further. Consider, for example, the
bundle E1

k,r. An exterior form α ∈ E1
k,r is of the form α0e

0 + α1e
1 + α2e

2 + α3e
3,

where αj ∈ Λk−1
H

n−1. Thus α is an element of Λk−1
H

n−1 ⊗ 2V1, since H0
∼= 2V1 as

an sp(1)-representation. Since α is in a copy of the representation Vr, it follows from
the isomorphism Vr ⊗ V1

∼= Vr+1 ⊕ Vr−1 that the αj must be in a combination of
Vr+1 and Vr−1 representations, i.e. αj ∈ E0

k−1,r+1 ⊕ E0
k−1,r−1. We write

α = α+ + α− = (α+
0 + α−0 )e0 + (α+

1 + α−1 )e1 + (α+
2 + α−2 )e2 + (α+

3 + α−3 )e3,

where α+
j ∈ E0

k−1,r+1 and α−j ∈ E0
k−1,r−1.

The following Lemma allows us to consider α+ and α− separately.

Lemma 6.3. If α = α+ + α− ∈ E1
k,r then both α+ and α− must be in E1

k,r.

Proof. In terms of representations, the situation is of the form

(pVr+1 ⊕ qVr−1)⊗ 2V1
∼= 2p(Vr+2 ⊕ Vr)⊕ 2q(Vr ⊕ Vr−2),

where α+ ∈ pVr+1 and α− ∈ qVr−1. For α to be in the representation 2(p + q)Vr, its
components in the representations 2pVr+2 and 2qVr−2 must both vanish separately.
The component in 2pVr+2 comes entirely from α+, so for this to vanish we must have
α+ ∈ 2(p + q)Vr independently of α−. Similarly, for the component in 2qVr−2 to
vanish, we must have α− ∈ 2(p + q)Vr. �

Thus we decompose the space E1
k,r into two summands, one coming from

E0
k−1,r−1 ⊗ 2V1 and one from E0

k−1,r+1 ⊗ 2V1. We extend this decomposition to
the cases l = 0, 2, 3, 4, defining the following notation.

Definition 6.4 Define the bundle E
l,m
k,r to be the subbundle of El

k,r arising from

Vm-type representations in Λk−l
H

n−1. In other words,

E
l,m
k,r ≡ (E0

k−l,m ⊗ Λl
H0) ∩ Ek,r.
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To recapitulate: for the space E
l,m
k,r , the bottom left index k refers to the exterior

power of the form α ∈ Λk
H

n; the bottom right index r refers to the irreducible
Sp(1)-representation in which α lies; the top left index l refers to the number of
differentials in the H0-direction and the top right index m refers to the irreducible
Sp(1)-representation of the contributions from Λk−a

H
n−1 before wedging with forms

in the H0-direction. This may appear slightly fiddly: it becomes rather simpler when
we consider the specific splittings which Definition 6.4 allows us to write down.

Lemma 6.5. Let E
l,m
k,r be as above. We have the following decompositions:

E0
k,r = E

0,r
k,r E1

k,r = E
1,r+1
k,r ⊕ E

1,r−1
k,r E2

k,r = E
2,r+2
k,r ⊕ E

2,r
k,r ⊕ E

2,r−2
k,r

E3
k,r = E

3,r+1
k,r ⊕ E

3,r−1
k,r and E4

k,r = E
4,r
k,r .

Proof. The first isomorphism is trivial, as is the last (since the hypercomplex
structure acts trivially on Λ4

H0). The second isomorphism is Lemma 6.3, and the
fourth follows in exactly the same way since Λ3

H0
∼= 2V1 also. The middle isomor-

phism follows a similar argument. �

Recall the self-dual forms and anti-self-dual forms in Example 5.6. The bundle
E

2,r
k,r splits according to whether its contribution from Λ2

H0 is self-dual or anti-self-

dual. We will call these summands E
2,r+
k,r and E

2,r−
k,r respectively, so E

2,r
k,r = E

2,r+
k,r ⊕

E
2,r−
k,r .

6.2. Lie in conditions. We have analysed the bundle Ek,r into a number of
different subbundles. We now determine when a particular exterior form lies in one
of these subbundles. Consider a form α = α1e

s1...sa + α2e
t1...ta + . . . etc. where αj ∈

E0
k−a,b. For α to lie in one of the spaces E

a,b
k,r the αj will usually have to satisfy some

simultaneous equations. Since these are the conditions for a form to lie in a particular
Lie algebra representation, we will refer to such equations as ‘Lie In Conditions’.
Our interest in these conditions arises from a consideration of exterior forms, but
the equations describe sp(1)-representations in general: for example, Equation (6.2)
gives the conditions which α ∈ Vr ⊗ V1 must satisfy to be in the Vr+1 subspace of
Vr+1 ⊕ Vr−1

∼= Vr ⊗ V1. The other lie in conditions have similar interpretations.

To begin with, we mention three trivial lie in conditions. Let α ∈ E0
k,r. That

α ∈ E
0,r
k,r is obvious, as is αe0123 ∈ E

4,r
k,r , since wedging with e0123 has no effect on the

sp(1)-action. Likewise, the sp(1)-action on the anti-self-dual 2-forms ω−1 = e01 − e23,
ω−2 = e02 − e31 and ω−3 = e03 − e12 is trivial, so αω−j ∈ E

2,r−
k,r for all j = 1, 2, 3.

This leaves the following three situations: those arising from taking exterior prod-
ucts with 1-forms, 3-forms and the self-dual 2-forms ω+

j . As usual when we want to
know which representation an exterior form is in, we apply the Casimir operator.

6.2.1. The cases l = 1 and l = 3. Let αj ∈ E0
k,r. Then α = α0e

0 + α1e
1 +

α2e
2 + α3e

3 ∈ E
1,r
k+1,r+1 ⊕ E

1,r
k+1,r−1, and α is entirely in E

1,r
k+1,r+1 if and only if

(I2 + J2 + K2)α = −(r + 1)(r + 3)α.

By the usual (Leibniz) rule for a Lie algebra action on a tensor product, we have
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that I2(αje
j) = I2(αj)e

j + 2I(αj)I(ej) + αjI
2(ej), etc. Thus

(I2 + J2 + K2)α =

3
∑

j=0

[

(I2 + J2 + K2)(αj)e
j

+αj(I
2 + J2 + K2)(ej)

+ 2
(

I(αj)I(ej) + J(αj)J(ej) + K(αj)K(ej)
)]

= −r(r + 2)α− 3α

+2

3
∑

j=0

(

I(αj)I(ej) + J(αj)J(ej) + K(αj)K(ej)
)

= (−r2 − 2r − 3)α

+2
(

I(α0)e
1 − I(α1)e

0 + I(α2)e
3 − I(α3)e

2+

+J(α0)e
2 − J(α1)e

3 − J(α2)e
0 + J(α3)e

1+

+K(α0)e
3 + K(α1)e

2 −K(α2)e
1 −K(α3)e

0
)

.

(6.1)

For α ∈ E
1,r
k+1,r+1 we need this to be equal to −(r + 1)(r + 3)α, which is the case if

and only if

−rα = I(α0)e
1 − I(α1)e

0 + I(α2)e
3 − I(α3)e

2

+J(α0)e
2 − J(α1)e

3 − J(α2)e
0 + J(α3)e

1

+ K(α0)e
3 + K(α1)e

2 −K(α2)e
1 −K(α3)e

0.

Since the αj have no ej-factors and the action of I, J and K preserves this
property, this equation can only be satisfied if it holds for each of the ej-components
separately. It follows that α ∈ E

1,r
k+1,r+1 if and only if α0, α1, α2 and α3 satisfy the

following lie in conditions:

rα0 − I(α1)− J(α2)−K(α3) = 0
rα1 + I(α0) + J(α3)−K(α2) = 0
rα2 − I(α3) + J(α0) + K(α1) = 0
rα3 + I(α2)− J(α1) + K(α0) = 0.

(6.2)

Suppose instead that α ∈ E
1,r
k+1,r−1. Then (I2 + J2 + K2)α = −(r − 1)(r + 1)α.

Putting this alternative into Equation (6.1) gives the result that α ∈ E
1,r
k+1,r−1 if and

only if

(r + 2)α0 + I(α1) + J(α2) + K(α3) = 0
(r + 2)α1 − I(α0)− J(α3) + K(α2) = 0
(r + 2)α2 + I(α3)− J(α0)−K(α1) = 0
(r + 2)α3 − I(α2) + J(α1)−K(α0) = 0.

(6.3)

Consider now α = α0e
123 +α1e

032 +α2e
013 +α3e

021 ∈ E
3,r
k+3,r+1⊕E

3,r
k+3,r−1. Since

Λ3
H0

∼= H0, the lie in conditions are exactly the same: for α to be in E
3,r
k+3,r+1 we

need the αj to satisfy Equations (6.2), and for α to be in E
3,r
k+3,r−1 we need the αj to

satisfy Equations (6.3).
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6.2.2. The case l = 2. We have already noted that wedging a form β ∈ E0
k,r

with an anti-self-dual 2-form ω−j has no effect on the sp(1)-action, so βω−j ∈ E
2,r−
k+2,r.

Thus we only have to consider the effect of wedging with the self-dual 2-forms
〈ω+

1 , ω+
2 , ω+

3 〉
∼= V2 ⊂ Λ2

H0. By the Clebsch-Gordon formula, the decomposition
takes the form Vr ⊗ V2

∼= Vr+2 ⊕ Vr ⊕ Vr−2. Thus for β = β1ω
+
1 + β2ω

+
2 + β3ω

+
3 we

want to establish the lie in conditions for β to be in E
2,r
k+2,r+2, E

2,r+
k+2,r and E

2,r
k+2,r−2.

We calculate these lie in conditions in a similar fashion to the previous cases,
by considering the action of the Casimir operator I2 + J2 + K2 on β and using the
multiplication table (5.3). The following lie in conditions are then easy to deduce:

β ∈ E
2,r
k+2,r+2 ⇐⇒







(r + 4)β1 = J(β3)−K(β2)
(r + 4)β2 = K(β1)− I(β3)
(r + 4)β3 = I(β2)− J(β1).

(6.4)

β ∈ E
2,r+
k+2,r ⇐⇒







2β1 = J(β3)−K(β2)
2β2 = K(β1)− I(β3)
2β3 = I(β2)− J(β1).

(6.5)

β ∈ E
2,r
k+2,r−2 ⇐⇒







(2− r)β1 = J(β3)−K(β2)
(2− r)β2 = K(β1)− I(β3)
(2− r)β3 = I(β2)− J(β1).

(6.6)

Equation (6.5) is particularly interesting. Since this equation singles out the Vr-
representation in the direct sum Vr+2⊕Vr⊕Vr+2, it must have dim Vr = r+1 linearly
independent solutions. Let β0 ∈ Vr and let β1 = I(β0), β2 = J(β0), β3 = K(β0).
Using the Lie algebra relations 2I = [J,K] = JK −KJ , it is easy to see that β1, β2

and β3 satisfy Equation 6.5. Moreover, there are r +1 linearly independent solutions
of this form (for r 6= 0). We conclude that all the solutions of Equation (6.5) take the
form β1 = I(β0), β2 = J(β0), β3 = K(β0).

6.3. The Symbol Sequence and Proof of Theorem 6.1. We now describe
the principal symbol of D, and examine its behaviour in the context of the decompo-
sitions of Definition 6.2 and Lemma 6.5. This leads to a proof of Theorem 6.1. First
we obtain the principal symbol from the formula for D in Lemma 5.7 by replacing dα

with αe0.

Proposition 6.6. Let x ∈ H
n, e0 ∈ T ∗x H

n and α ∈ Ek,r. The principal symbol
mapping σD(x, e0) : Ek,r → Ek+1,r+1 is given by

σD(x, e0)(α) =
1

2(r + 1)

(

(r + 2)αe0 − I(α)e1 − J(α)e2 −K(α)e3
)

.
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Proof. Replacing dα with αe0 in the formula for D obtained in Lemma 5.7, we
have

σD(x, e0)(α) = −
1

4

(

(r − 1) +
1

r + 1
(I2 + J2 + K2)

)

αe0

=
−1

4(r + 1)

[

( (r − 1)(r + 1)− r(r + 2)− 3 ) αe0

+2
(

I(α)e1 + J(α)e2 + K(α)e3
)

]

=
1

2(r + 1)

(

(r + 2)αe0 − I(α)e1 − J(α)e2 −K(α)e3
)

,

as required. �

Corollary 6.7. The principal symbol σD(x, e0) maps the space E
l,m
k,r to the

space E
l+1,m
k+1,r+1.

Proof. We already know that σD : Ek,r → Ek+1,r+1, by definition. Using Lemma
6.6, we see that σD(x, e0) increases the number of differentials in the H0-direction by
one, so the index l increases by one. The only action in the other directions is the
sp(1)-action, which preserves the irreducible decomposition of the contribution from
Λk−a

H
n−1, so the index m remains the same. �

To save space we shall use σ as an abbreviation for σD(x, e0) for the rest of this
section. The point of all this work on decomposition now becomes apparent. Since
σ : El

k,r → El+1
k+1,r+1, we can reduce the indefinitely long symbol sequence

. . .
σ
→ Ek−1,r−1

σ
→ Ek,r

σ
→ Ek+1,r+1

σ
→ . . . etc.

to the 5-space sequence

0
σ
→ E0

k−2,r−2
σ
→ E1

k−1,r−1
σ
→ E2

k,r
σ
→ E3

k+1,r+1
σ
→ E4

k+2,r+2
σ
→ 0. (6.7)

Using Lemma 6.5 as well, we can analyse this sequence still further according to
the different (top right) m-indices, obtaining three short sequences (for k ≥ 2, k ≡
r mod 2)

E
2,r+2
k,r → E

3,r+2
k+1,r+1 → E

4,r+2
k+2,r+2

⊕ ⊕

E
1,r
k−1,r−1 → E

2,r
k,r → E

3,r
k+1,r+1

⊕ ⊕

E
0,r−2
k−2,r−2 → E

1,r−2
k−1,r−1 → E

2,r−2
k,r

(6.8)

(where the surrounding zeros have been omitted to save space). This reduces the
problem of determining where the operator D is elliptic to the problem of determining
when these three sequences are exact.

Proposition 6.8. When r 6= 0, the three sequences of (6.8) are exact.

Proof. Let r > 0. Consider the middle sequence 0 → E
1,r
k−1,r−1 → E

2,r
k,r →

E
3,r
k+1,r+1 → 0. First we calculate the dimensions of these spaces. The first and

last are of the form E0
k,r ⊗ 2V1, and it follows that dim E

1,r
k−1,r−1 = 2rεn−1

k−2,r and

dim E
3,r
k+1,r+1 = 2(r + 2)εn−1

k−2,r. The space E
2,r+
k,r has dimension (r + 1)εn−1

k−2,r and
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the space E
2,r−
k,r has dimension 3(r + 1)εn−1

k−2,r, giving E
2,r
k,r a total dimension of 4(r +

1)εn−1
k−2,r. The alternating sum of these dimensions vanishes, since

dim E
1,r
k−1,r−1 − dim E

2,r
k,r + dim E

3,r
k+1,r+1 = εn−1

k−2,r(2r − 4(r + 1) + 2(r + 2)) = 0.

Therefore the exactness of the sequence follows if we can show that it is exact at the
middle space E

2,r
k,r . Let β = β1ω

+
1 + β2ω

+
2 + β3ω

+
3 ∈ E

2,r+
k,r . Recall the lie in condition

(6.5) that β must take the form β = 1
r (I(β0)ω

+
1 + J(β0)ω

+
2 + K(β0)ω

+
3 ) for some

β0 ∈ E0
k−2,r. (The 1

r -factor makes no difference here and is useful for cancellations.)

Thus a general element of E
2,r
k,r is of the form

β + γ =
1

r

(

I(β0)ω
+
1 + J(β0)ω

+
2 + K(β0)ω

+
3

)

+ γ1ω
−
1 + γ2ω

−
2 + γ3ω

−
3 ,

for β0, γj ∈ E
0,r
k−2,r. A calculation using Proposition 6.6 shows that

σ(β + γ) = 0 ⇐⇒















(r + 2)β0 + I(γ1) + J(γ2) + K(γ3) = 0
(r + 2)γ1 − I(β0)− J(γ3) + K(γ2) = 0
(r + 2)γ2 + I(γ3)− J(β0)−K(γ1) = 0
(r + 2)γ3 − I(γ2) + J(γ1)−K(β0) = 0.

But this is exactly the lie in condition (6.3) which we need for β0e
0+γ1e

1+γ2e
2+γ3e

3

to be in E
1,r
k−1,r−1, in which case we have

β + γ = σ
(

2(β0e
0 + γ1e

1 + γ2e
2 + γ3e

3)
)

.

This demonstrates exactness at E
2,r
k,r and so this sequence is exact.

The exactness of the other two sequences in (6.8) is demonstrated in an equally
fiddly but essentially similar fashion. �

The case r = 0 is different. Here the bottom sequence of (6.8) disappears alto-
gether, the top sequence still being exact. Exactness is lost in the middle sequence.
Since the isomorphism εn−1

k−2,0V0 ⊗ V2
∼= εn−1

k−2,0V2 gives no trivial V0-representations,

there is no space E
2,0+
k,0 . Thus E

2,0
k,0 is ‘too small’ — we are left with a sequence

0 → 3εn−1
k−2,0V0 → 2εn−1

k−2,0V1 → 0,

which cannot be exact. As there is no space E2
0,0, this problem does not arise for

the top row 0 → E0,0 → E1,1 → . . . → E2n,2n → 0, and it is easy to show that this
particular sequence is exact (also shown in [S2, Theorem 5.5]). This concludes our
proof of Theorem 6.1.

7. Quaternionic Kähler and Hypercomplex Manifolds. In this final sec-
tion the double complex is considered in the cases of quaternionic Kähler and hyper-
complex manifolds. These more special structures give extra information about the
nature of the double complex and suggest lines for future research.

The twistor space of a compact quaternionic Kähler manifold with positive scalar
curvature is a Kähler manifold with positive scalar curvature [S1, Theorem 6.1] and
with only (p, p)-cohomology [S1, Theorem 6.6], from which it follows that the co-
homology of the quaternionic Kähler manifold is sp(1)-invariant and so lies in the
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spaces E2k,0. A recent result of Semmelmann and Weingart extends this to quater-
nionic Kähler manifolds with negative scalar curvature, showing that their de Rham
cohomology is the direct sum of sp(1)-invariant and exceptional cohomology [SeW,
§6]. Thus the sp(1)-invariant section of our double complex, the spaces E2k,0, is of
particular significance for quaternionic Kähler manifolds. This encourages further
study of the part of the complex which fails to be elliptic, and suggests that the fail-
ure of ellipticity is in some sense ‘non-essential’. Techniques that have been suggested
by other work include adapting the Fröhlicher Spectral Sequence [WW, p 225] to
describe the quaternionic double complex, and adding trivial summands to the spaces
E2k,0 in a similar fashion to that of Reyes-Carrión [R, Lemma 2]. The double complex
on quaternionic Kähler manifolds clearly warrants further attention.

The double complex on hypercomplex manifolds has already been considered in
some detail by the author [Wi]. Let M be a hypercomplex manifold. Then M has
a triple (I, J,K) of complex structures which generates the sp(1)-action on ΛkT ∗M

and which we can identify globally with the imaginary quaternions. Joyce has used
this identification to define ‘quaternionic holomorphic functions’, which he calls q-
holomorphic functions. A quaternion-valued function f = f0 + f1i + f2j + f3k is de-
fined to be q-holomorphic if it satisfies a quaternionic version of the Cauchy-Riemann
equations [J2, 3.3]

df0 + I(df1) + J(df2) + K(df3) = 0. (7.1)

This equation can also be obtained by comparing the Sp(1)- representations on
T ∗M and on the quaternions themselves. Recall that Equation (4.1) describes the
Sp(1)GL(n, H)-representation on H

n as V1 ⊗E. In the case n = 1 this reduces to the
representation

H ∼= V1 ⊗ V1, (7.2)

interpreting the left-hand copy of V1 as the left-action (p, q) 7→ pq, and the right-hand
copy of V1 as the right-action (p, q) 7→ qp−1, for q ∈ H and p ∈ Sp(1).

We can now use our globally defined hypercomplex structure to combine the
Sp(1)-actions on H and ΛkT ∗M . Consider, for example, quaternion-valued exterior
forms in the bundle Ek,r = εn

k,rVr. The Sp(1)-action on these forms is described by
the representation

H⊗ Ek,r
∼= V1 ⊗ V1 ⊗ εn

k,rVr.

Leaving the left H-action untouched, we consider the effect of the right H-action and
the hypercomplex structure simultaneously. This amounts to applying the operators

I : α → I(α)− αi, J : α → J(α)− αj and K : α → K(α)− αk

to α ∈ H ⊗ Ek,r. Under this diagonal action the tensor product V1 ⊗ εn
k,rVr splits,

giving the representation

H⊗ Ek,r
∼= V1 ⊗ εn

k,r(Vr+1 ⊕ Vr−1). (7.3)

This gives a quaternion-valued version of the double complex which has certain ad-
vantages over its real-valued counterpart — for example, in 4-dimensions the whole
quaternionic double complex is elliptic. This can also be thought of as ‘twisting’ the
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double complex by an Sp(1) representation, in this case V1, a technique which guar-
antees that both the first two rows of the double complex are elliptic [Wi, Lemma
7.1.7].

Joyce’s equation (7.1) turns out to be one example of this: it is the condition
necessary for df to lie in the V2-summand of the splitting

H⊗ T ∗M ∼= V1 ⊗ 2n(V2 ⊕ V0).

The projection to the V0-summand is the hypercomplex version of the Dirac operator
which Baston’s second-order differential operators are designed to resolve [Ba]. We
can now see clearly why a first-order resolution does not occur naturally: the Dirac
operator maps to the bottom row of the quaternion-valued double complex, from
which there is no natural downward continuation. On the other hand its orthogonal
complement is naturally the beginning of a first-order elliptic complex and thus a far
better choice when seeking a resolution with interesting quaternionic cohomology.

Joyce’s paper also develops a theory of quaternionic algebra based upon left H-
modules whose structure is ‘augmented’ by singling out a particular real subspace.
The author has shown that the most important class of these ‘augmented H-modules’
arises from Sp(1)-representations using splittings of the form given by Equation (7.3).
This point of view turns out to be very fruitful: it both improves our understanding
of Joyce’s quaternionic algebra and shows how to apply his theory to many naturally
occuring vector bundles over hypercomplex manifolds. This leads not only to Joyce’s
q-holomorphic functions, but also to quaternionic analogues of holomorphic k-forms,
the holomorphic tangent and cotangent spaces, and even complex Lie groups and Lie
algebras.

Chen and Li [CL] have recently described quaternionic maps between hyperkähler
manifolds. These too can be described by the splitting of Sp(1)-representations, which
demonstrates clearly that the quaternionic maps of Chen and Li are a natural gen-
eralisation of Joyce’s q-holomorphic functions and can be easily extended to define
quaternionic maps between hypercomplex manifolds. The author hopes to make this
type of quaternionic analysis on hypercomplex manifolds the subject of a future paper.
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